Reliable multicast for the Grid: a case study in experimental computer science

Author(s):  
Maziar Nekovee ◽  
Marinho P Barcellos ◽  
Michael Daw

In its simplest form, multicast communication is the process of sending data packets from a source to multiple destinations in the same logical multicast group. IP multicast allows the efficient transport of data through wide-area networks, and its potentially great value for the Grid has been highlighted recently by a number of research groups. In this paper, we focus on the use of IP multicast in Grid applications, which require high-throughput reliable multicast. These include Grid-enabled computational steering and collaborative visualization applications, and wide-area distributed computing. We describe the results of our extensive evaluation studies of state-of-the-art reliable-multicast protocols, which were performed on the UK's high-speed academic networks. Based on these studies, we examine the ability of current reliable multicast technology to meet the Grid's requirements and discuss future directions.

2002 ◽  
Author(s):  
Ryusuke Ogasawara ◽  
George Kosugi ◽  
Tadafumi Takata ◽  
Masafumi Yagi ◽  
Yoshihiro Chikada ◽  
...  

Author(s):  
Dhinaharan Nagamalai ◽  
Seoung-Hyeon Lee ◽  
Won-Goo Lee ◽  
Jae-Kwang Lee

Author(s):  
Sudesh Kumar ◽  
Abhishek Bansal ◽  
Ram Shringar Raw

Recently, the flying ad-hoc network (FANETs) is a popular networking technology used to create a wireless network through unmanned aerial vehicles (UAVs). In this network, the UAV nodes work as intermediate nodes that communicate with each other to transmit data packets over the network, in the absence of fixed an infrastructure. Due to high mobility degree of UAV nodes, network formation and deformation among the UAVs are very frequent. Therefore, effective routing is a more challenging issue in FANETs. This paper presents performance evaluations and comparisons of the popular topology-based routing protocol namely AODV and position-based routing protocol, namely LAR for high speed mobility as well as a verity of the density of UAV nodes in the FANETs environment through NS-2 simulator. The extensive simulation results have shown that LAR gives better performance than AODV significantly in terms of the packet delivery ratio, normalized routing overhead, end-to-end delay, and average throughput, which make it a more effective routing protocol for the highly dynamic nature of FANETs.


Author(s):  
Norimitsu Sakagami ◽  
Keita Hirayama ◽  
Ryo Taba ◽  
Shota Kobashigawa ◽  
Seita Arashiro ◽  
...  

Author(s):  
D. Chakraborty ◽  
G. Chakraborty ◽  
N. Shiratori

The advancement in optical fiber and switching technologies has resulted in a new generation of high-speed networks that can achieve speeds of up to a few gigabits per second. Also, the progress in audio, video and data storage technologies has given rise to new distributed real-time applications. These applications may involve multimedia, which require low end-to-end delay. The applications’ requirements, such as the end-to-end delay, delay jitter, and loss rate, are expressed as QoS parameters, which must be guaranteed. In addition, many of these new applications involve multiple users, and hence the importance of multicast communication. Multimedia applications are becoming increasingly important, as networks are now capable of carrying continuous media traffic, such as voice and video, to the end user. When there is a lot of information to transmit to a subset of hosts, then multicast is the best possible way to facilitate it. This article addresses different multicast routing algorithms and protocols. We have also discussed about the QoS multicast routing and conclude this article with mobile multicasting.


Sign in / Sign up

Export Citation Format

Share Document