Issues in the interpretation of climate model ensembles to inform decisions

Author(s):  
David A Stainforth ◽  
Thomas E Downing ◽  
Richard Washington ◽  
Ana Lopez ◽  
Mark New

There is a scientific consensus regarding the reality of anthropogenic climate change. This has led to substantial efforts to reduce atmospheric greenhouse gas emissions and thereby mitigate the impacts of climate change on a global scale. Despite these efforts, we are committed to substantial further changes over at least the next few decades. Societies will therefore have to adapt to changes in climate. Both adaptation and mitigation require action on scales ranging from local to global, but adaptation could directly benefit from climate predictions on regional scales while mitigation could be driven solely by awareness of the global problem; regional projections being principally of motivational value. We discuss how recent developments of large ensembles of climate model simulations can be interpreted to provide information on these scales and to inform societal decisions. Adaptation is most relevant as an influence on decisions which exist irrespective of climate change, but which have consequences on decadal time-scales. Even in such situations, climate change is often only a minor influence; perhaps helping to restrict the choice of ‘no regrets’ strategies. Nevertheless, if climate models are to provide inputs to societal decisions, it is important to interpret them appropriately. We take climate ensembles exploring model uncertainty as potentially providing a lower bound on the maximum range of uncertainty and thus a non-discountable climate change envelope. An analysis pathway is presented, describing how this information may provide an input to decisions, sometimes via a number of other analysis procedures and thus a cascade of uncertainty. An initial screening is seen as a valuable component of this process, potentially avoiding unnecessary effort while guiding decision makers through issues of confidence and robustness in climate modelling information. Our focus is the usage of decadal to centennial time-scale climate change simulations as inputs to decision making, but we acknowledge that robust adaptation to the variability of present day climate encourages the development of less vulnerable systems as well as building critical experience in how to respond to climatic uncertainty.

Author(s):  
Benjamin Mark Sanderson

Long-term planning for many sectors of society—including infrastructure, human health, agriculture, food security, water supply, insurance, conflict, and migration—requires an assessment of the range of possible futures which the planet might experience. Unlike short-term forecasts for which validation data exists for comparing forecast to observation, long-term forecasts have almost no validation data. As a result, researchers must rely on supporting evidence to make their projections. A review of methods for quantifying the uncertainty of climate predictions is given. The primary tool for quantifying these uncertainties are climate models, which attempt to model all the relevant processes that are important in climate change. However, neither the construction nor calibration of climate models is perfect, and therefore the uncertainties due to model errors must also be taken into account in the uncertainty quantification.Typically, prediction uncertainty is quantified by generating ensembles of solutions from climate models to span possible futures. For instance, initial condition uncertainty is quantified by generating an ensemble of initial states that are consistent with available observations and then integrating the climate model starting from each initial condition. A climate model is itself subject to uncertain choices in modeling certain physical processes. Some of these choices can be sampled using so-called perturbed physics ensembles, whereby uncertain parameters or structural switches are perturbed within a single climate model framework. For a variety of reasons, there is a strong reliance on so-called ensembles of opportunity, which are multi-model ensembles (MMEs) formed by collecting predictions from different climate modeling centers, each using a potentially different framework to represent relevant processes for climate change. The most extensive collection of these MMEs is associated with the Coupled Model Intercomparison Project (CMIP). However, the component models have biases, simplifications, and interdependencies that must be taken into account when making formal risk assessments. Techniques and concepts for integrating model projections in MMEs are reviewed, including differing paradigms of ensembles and how they relate to observations and reality. Aspects of these conceptual issues then inform the more practical matters of how to combine and weight model projections to best represent the uncertainties associated with projected climate change.


2020 ◽  
Vol 172 ◽  
pp. 02006
Author(s):  
Hamed Hedayatnia ◽  
Marijke Steeman ◽  
Nathan Van Den Bossche

Understanding how climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the preservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like salt crystallization cycles is of crucial importance when considering mitigating actions. Due to the vulnerability of cultural heritage in Iran to climate change, the impact of this phenomenon on basic parameters plus variables more critical to building damage like salt crystallization index needs to be analyzed. Regional climate modelling projections can be used to asses the impact of climate change effects on heritage. The output of two different regional climate models, the ALARO-0 model (Ghent University-RMI, Belgium) and the REMO model (HZG-GERICS, Germany), is analyzed to find out which model is more adapted to the region. So the focus of this research is mainly on the evaluation to determine the reliability of both models over the region. For model validation, a comparison between model data and observations was performed in 4 different climate zones for 30 years to find out how reliable these models are in the field of building pathology.


2019 ◽  
Vol 156 (3) ◽  
pp. 299-314 ◽  
Author(s):  
Gabriel Rondeau-Genesse ◽  
Marco Braun

Abstract The pace of climate change can have a direct impact on the efforts required to adapt. For short timescales, however, this pace can be masked by internal variability (IV). Over a few decades, this can cause climate change effects to exceed what would be expected from the greenhouse gas (GHG) emissions alone or, to the contrary, cause slowdowns or even hiatuses. This phenomenon is difficult to explore using ensembles such as CMIP5, which are composed of multiple climate models and thus combine both IV and inter-model differences. This study instead uses CanESM2-LE and CESM-LE, two state-of-the-art large ensembles (LE) that comprise multiple realizations from a single climate model and a single GHG emission scenario, to quantify the relationship between IV and climate change over the next decades in Canada and the USA. The mean annual temperature and the 3-day maximum and minimum temperatures are assessed. Results indicate that under the RCP8.5, temperatures within most of the individual large ensemble members will increase in a roughly linear manner between 2021 and 2060. However, members of the large ensembles in which a slowdown of warming is found during the 2021–2040 period are two to five times more likely to experience a period of very fast warming in the following decades. The opposite scenario, where the changes expected by 2050 would occur early because of IV, remains fairly uncommon for the mean annual temperature, but occurs in 5 to 15% of the large ensemble members for the temperature extremes.


2020 ◽  
Author(s):  
Joris de Vente ◽  
Joris Eekhout

<p>Climate models project increased extreme precipitation for the coming decades, which may lead to higher soil erosion in many locations worldwide. The impact of climate change on soil erosion is most often assessed by applying a soil erosion model forced by bias-corrected climate model output. A literature review among more than 100 papers showed that many studies use different soil erosion models, bias-correction methods and climate model ensembles. In this study, we assessed how these differences affect the outcome of climate change impact assessments on soil erosion. The study was performed in two contrasting Mediterranean catchments (SE Spain), where climate change is projected to lead to a decrease in annual precipitation sum and an increase in extreme precipitation, based on the RCP8.5 emission scenario. First, we assessed the impact of soil erosion model selection using the three most widely used model concepts, i.e. a model forced by precipitation (RUSLE), a model forced by runoff (MUSLE), and a model forced by precipitation and runoff (MMF). Depending on the model, soil erosion in the study area is projected to decrease (RUSLE) or increase (MUSLE and MMF). The differences between the model projections are inherently a result of their model conceptualization, such as a decrease of soil loss due to decreased annual precipitation sum (RUSLE) and an increase of soil loss due to increased extreme precipitation and, consequently, increased runoff (MUSLE). An intermediate result is obtained with MMF, where a projected decrease in detachment by raindrop impact is counteracted by a projected increase in detachment by runoff. Second, we evaluated the implications of three bias‐correction methods, i.e. delta change, quantile mapping and scaled distribution mapping. Scaled distribution mapping best reproduces the raw climate change signal, in particular for extreme precipitation. Depending on the bias‐correction method, soil erosion is projected to decrease (delta change) or increase (quantile mapping and scaled distribution mapping). Finally, we assessed the effect of climate model ensembles on soil erosion projections. We showed that individual climate models may project opposite changes with respect to the ensemble average, hence, climate model ensembles are essential in soil erosion impact assessments to account for climate model uncertainty. We conclude that in climate change impact assessments it is important to select a soil erosion model that is forced by both precipitation and runoff, which under climate change may have a contrasting effect on soil erosion. Furthermore, the impact of climate change on soil erosion can only accurately be assessed with a bias‐correction method that best reproduces the projected climate change signal, in combination with a representative ensemble of climate models.</p>


2015 ◽  
Vol 12 (3) ◽  
pp. 3011-3028 ◽  
Author(s):  
D. Maraun ◽  
M. Widmann

Abstract. To assess potential impacts of climate change for a specific location, one typically employs climate model simulations at the grid box corresponding to the same geographical location. But based on regional climate model simulations, we show that simulated climate might be systematically displaced compared to observations. In particular in the rain shadow of moutain ranges, a local grid box is therefore often not representative of observed climate: the simulated windward weather does not flow far enough across the mountains; local grid boxes experience the wrong airmasses and atmospheric circulation. In some cases, also the local climate change signal is deteriorated. Classical bias correction methods fail to correct these location errors. Often, however, a distant simulated time series is representative of the considered observed precipitation, such that a non-local bias correction is possible. These findings also clarify limitations of bias correcting global model errors, and of bias correction against station data.


Author(s):  
Chris Kent ◽  
Nick J. Dunstone ◽  
Simon Tucker ◽  
Adam A. Scaife ◽  
Simon Brown ◽  
...  

Abstract The UNSEEN (UNprecedented Simulated Extremes using ENsembles) method involves using a large ensemble of climate model simulations to increase the sample size of rare events. Here we extend UNSEEN to focus on intense summertime daily rainfall, estimating plausible rainfall extremes in the current climate. To address modelling limitations simulations from two climate models were used; an initialised 25km global model that uses parametrized convection, and a dynamically downscaled 2.2km model that uses explicit convection. In terms of the statistical characteristics that govern very rare return periods, the models are not significantly different from the observations across much of the UK. Our analysis provides more precise estimates of 1000-year return levels for extreme daily rainfall, reducing sampling uncertainty by 70-90% compared to using observations alone. This framework enables observed daily storm profiles to be adjusted to more statistically robust estimates of extreme rainfall. For a damaging storm in July 2007 which led to surface water flooding, we estimate physically plausible increases in the total daily rainfall of 50 – 100%. For much of the UK the annual chance of record-breaking daily summertime rainfall is estimated to be around 1% per year in the present-day climate. Analysis of the dynamical states in our UNSEEN events indicates that heavy daily rainfall is associated with a southward displaced and meandering North Atlantic jet stream, increasing the advection of warm moist air from across Southern Europe and the Mediterranean, and intensifying extratropical storms. This work represents an advancement in the use of climate modelling for estimating present-day climate hazards and outlines a framework for applying UNSEEN at higher spatial and temporal resolutions.


2021 ◽  
pp. 1-57
Author(s):  
Emily Bercos-Hickey ◽  
Christina M. Patricola ◽  
William A. Gallus

AbstractThe impact of climate change on severe storms and tornadoes remains uncertain, largely owing to inconsistencies in observational data and limitations of climate models. We performed ensembles of convection-permitting climate model simulations to examine how three tornadic storms would change if similar events were to occur in pre-industrial and future climates. The choice of events includes winter, nocturnal, and spring tornadic storms to provide insight into how the timing and seasonality of storms may affect their response to climate change. Updraft helicity (UH), convective available potential energy (CAPE), storm relative helicity (SRH), and convective inhibition (CIN) were used to determine the favorability for the three tornadic storm events in the different climate states. We found that from the pre-industrial to present, the potential for tornadic storms decreased in the winter event and increased in the nocturnal and spring events. With future climate change, the potential for tornadic storms increased in the winter and nocturnal events in association with increased CAPE, and decreased in the spring event despite greater CAPE.


2017 ◽  
Vol 10 (5) ◽  
pp. 1849-1872 ◽  
Author(s):  
Benoit P. Guillod ◽  
Richard G. Jones ◽  
Andy Bowery ◽  
Karsten Haustein ◽  
Neil R. Massey ◽  
...  

Abstract. Extreme weather events can have large impacts on society and, in many regions, are expected to change in frequency and intensity with climate change. Owing to the relatively short observational record, climate models are useful tools as they allow for generation of a larger sample of extreme events, to attribute recent events to anthropogenic climate change, and to project changes in such events into the future. The modelling system known as weather@home, consisting of a global climate model (GCM) with a nested regional climate model (RCM) and driven by sea surface temperatures, allows one to generate a very large ensemble with the help of volunteer distributed computing. This is a key tool to understanding many aspects of extreme events. Here, a new version of the weather@home system (weather@home 2) with a higher-resolution RCM over Europe is documented and a broad validation of the climate is performed. The new model includes a more recent land-surface scheme in both GCM and RCM, where subgrid-scale land-surface heterogeneity is newly represented using tiles, and an increase in RCM resolution from 50 to 25 km. The GCM performs similarly to the previous version, with some improvements in the representation of mean climate. The European RCM temperature biases are overall reduced, in particular the warm bias over eastern Europe, but large biases remain. Precipitation is improved over the Alps in summer, with mixed changes in other regions and seasons. The model is shown to represent the main classes of regional extreme events reasonably well and shows a good sensitivity to its drivers. In particular, given the improvements in this version of the weather@home system, it is likely that more reliable statements can be made with regards to impact statements, especially at more localized scales.


2020 ◽  
Author(s):  
Matt Amos ◽  
Paul J. Young ◽  
J. Scott Hosking ◽  
Jean-François Lamarque ◽  
N. Luke Abraham ◽  
...  

Abstract. The current method for averaging model ensembles, which is to calculate a multi model mean, assumes model independence and equal model skill. Sharing of model components amongst families of models and research centres, conflated by growing ensemble size, means model independence cannot be assumed and is hard to quantify. We present a methodology to produce a weighted model ensemble projection, accounting for model performance and model independence. Model weights are calculated by comparing model hindcasts to a selection of metrics chosen for their physical relevance to the process or phenomena of interest. This weighting methodology is applied to the Chemistry-Climate Model Initiative (CCMI) ensemble, to investigate Antarctic ozone depletion and subsequent recovery. The weighted mean projects an ozone recovery to 1980 levels, by 2056 with a 95 % confidence interval (2052–2060), 4 years earlier than the most recent study. Perfect model testing and out-of-sample testing validate the results and show a greater projective skill than a standard multi model mean. Interestingly, the construction of a weighted mean also provides insight into model performance and dependence between the models. This weighting methodology is robust to both model and metric choices and therefore has potential applications throughout the climate and chemistry-climate modelling communities.


2015 ◽  
Vol 28 (24) ◽  
pp. 9561-9582 ◽  
Author(s):  
Brent Boehlert ◽  
Susan Solomon ◽  
Kenneth M. Strzepek

Abstract Climate change and rapidly rising global water demand are expected to place unprecedented pressures on already strained water resource systems. Successfully planning for these future changes requires a sound scientific understanding of the timing, location, and magnitude of climate change impacts on water needs and availability—not only average trends but also interannual variability and quantified uncertainties. In recent years, two types of large-ensemble runs of climate projections have become available: those from groups of more than 20 different climate models and those from repeated runs of several individual models. These provide the basis for novel probabilistic evaluation of both projected climate change and the resulting effects on water resources. Using a broad range of available ensembles, this research explores the spatial and temporal patterns of high confidence as well as uncertainty in projected river runoff, irrigation water requirements, basin storage yield, and cost estimates of adapting regional water systems to maintain historical supply. Projections of river runoff show robust between-ensemble agreement in regional drying (e.g., southern Africa and southern Europe) and wetting trends (e.g., northeastern United States). By integrating runoff over space and time, the economic effects of adapting supply systems to 2050 water availability show still broader trend agreement across ensembles. That agreement, obtained across such a wide range of multiple-member climate model ensembles in some locations, suggests a high degree of confidence in direction of change in water availability and provides clearer signals for longer-term investment decisions in water infrastructure.


Sign in / Sign up

Export Citation Format

Share Document