scholarly journals Water under a Changing and Uncertain Climate: Lessons from Climate Model Ensembles*

2015 ◽  
Vol 28 (24) ◽  
pp. 9561-9582 ◽  
Author(s):  
Brent Boehlert ◽  
Susan Solomon ◽  
Kenneth M. Strzepek

Abstract Climate change and rapidly rising global water demand are expected to place unprecedented pressures on already strained water resource systems. Successfully planning for these future changes requires a sound scientific understanding of the timing, location, and magnitude of climate change impacts on water needs and availability—not only average trends but also interannual variability and quantified uncertainties. In recent years, two types of large-ensemble runs of climate projections have become available: those from groups of more than 20 different climate models and those from repeated runs of several individual models. These provide the basis for novel probabilistic evaluation of both projected climate change and the resulting effects on water resources. Using a broad range of available ensembles, this research explores the spatial and temporal patterns of high confidence as well as uncertainty in projected river runoff, irrigation water requirements, basin storage yield, and cost estimates of adapting regional water systems to maintain historical supply. Projections of river runoff show robust between-ensemble agreement in regional drying (e.g., southern Africa and southern Europe) and wetting trends (e.g., northeastern United States). By integrating runoff over space and time, the economic effects of adapting supply systems to 2050 water availability show still broader trend agreement across ensembles. That agreement, obtained across such a wide range of multiple-member climate model ensembles in some locations, suggests a high degree of confidence in direction of change in water availability and provides clearer signals for longer-term investment decisions in water infrastructure.

2017 ◽  
Vol 98 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Elizabeth J. Kendon ◽  
Nikolina Ban ◽  
Nigel M. Roberts ◽  
Hayley J. Fowler ◽  
Malcolm J. Roberts ◽  
...  

Abstract Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.


2020 ◽  
Author(s):  
Joris de Vente ◽  
Joris Eekhout

<p>Climate models project increased extreme precipitation for the coming decades, which may lead to higher soil erosion in many locations worldwide. The impact of climate change on soil erosion is most often assessed by applying a soil erosion model forced by bias-corrected climate model output. A literature review among more than 100 papers showed that many studies use different soil erosion models, bias-correction methods and climate model ensembles. In this study, we assessed how these differences affect the outcome of climate change impact assessments on soil erosion. The study was performed in two contrasting Mediterranean catchments (SE Spain), where climate change is projected to lead to a decrease in annual precipitation sum and an increase in extreme precipitation, based on the RCP8.5 emission scenario. First, we assessed the impact of soil erosion model selection using the three most widely used model concepts, i.e. a model forced by precipitation (RUSLE), a model forced by runoff (MUSLE), and a model forced by precipitation and runoff (MMF). Depending on the model, soil erosion in the study area is projected to decrease (RUSLE) or increase (MUSLE and MMF). The differences between the model projections are inherently a result of their model conceptualization, such as a decrease of soil loss due to decreased annual precipitation sum (RUSLE) and an increase of soil loss due to increased extreme precipitation and, consequently, increased runoff (MUSLE). An intermediate result is obtained with MMF, where a projected decrease in detachment by raindrop impact is counteracted by a projected increase in detachment by runoff. Second, we evaluated the implications of three bias‐correction methods, i.e. delta change, quantile mapping and scaled distribution mapping. Scaled distribution mapping best reproduces the raw climate change signal, in particular for extreme precipitation. Depending on the bias‐correction method, soil erosion is projected to decrease (delta change) or increase (quantile mapping and scaled distribution mapping). Finally, we assessed the effect of climate model ensembles on soil erosion projections. We showed that individual climate models may project opposite changes with respect to the ensemble average, hence, climate model ensembles are essential in soil erosion impact assessments to account for climate model uncertainty. We conclude that in climate change impact assessments it is important to select a soil erosion model that is forced by both precipitation and runoff, which under climate change may have a contrasting effect on soil erosion. Furthermore, the impact of climate change on soil erosion can only accurately be assessed with a bias‐correction method that best reproduces the projected climate change signal, in combination with a representative ensemble of climate models.</p>


2013 ◽  
Vol 17 (3) ◽  
pp. 1189-1204 ◽  
Author(s):  
M. J. Muerth ◽  
B. Gauvin St-Denis ◽  
S. Ricard ◽  
J. A. Velázquez ◽  
J. Schmid ◽  
...  

Abstract. In climate change impact research, the assessment of future river runoff as well as the catchment-scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate projections originating from the climate models and the downscaling techniques, as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of uncertainty. Within the QBic3 project (Québec–Bavarian International Collaboration on Climate Change), the relative contributions to the overall uncertainty from the whole model chain (from global climate models to water management models) are investigated using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use regional climate models (RCMs). One reason for that is that the physical coherence between atmospheric and land-surface variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to facilitate the reproduction of historic runoff conditions when used in hydrological models, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased) climate model data itself is sometimes disputed among scientists. For these reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in hydrology, we should consider it as a source of uncertainty. If not, the application of bias correction methods is either unnecessary to obtain the change signal in hydro-climatic projections, or safe to use for the production of present and future river runoff scenarios as it does not alter the change signal. The results of the present paper highlight the analysis of daily runoff simulated with four different hydrological models in two natural-flow catchments, driven by different regional climate models for a reference and a future period. As expected, bias correction of climate model outputs is important for the reproduction of the runoff regime of the past, regardless of the hydrological model used. Then again, its impact on the relative change of flow indicators between reference and future periods is weak for most indicators, with the exception of the timing of the spring flood peak. Still, our results indicate that the impact of bias correction on runoff indicators increases with bias in the climate simulations.


2012 ◽  
Vol 9 (9) ◽  
pp. 10205-10243 ◽  
Author(s):  
M. J. Muerth ◽  
B. Gauvin St-Denis ◽  
S. Ricard ◽  
J. A. Velázquez ◽  
J. Schmid ◽  
...  

Abstract. In climate change impact research, the assessment of future river runoff as well as the catchment scale water balance is impeded by different sources of modeling uncertainty. Some research has already been done in order to quantify the uncertainty of climate projections originating from the climate models and the downscaling techniques as well as from the internal variability evaluated from climate model member ensembles. Yet, the use of hydrological models adds another layer of incertitude. Within the QBic3 project (Québec-Bavaria International Collaboration on Climate Change) the relative contributions to the overall uncertainty from the whole model chain (from global climate models to water management models) are investigated using an ensemble of multiple climate and hydrological models. Although there are many options to downscale global climate projections to the regional scale, recent impact studies tend to use Regional Climate Models (RCMs). One reason for that is that the physical coherence between atmospheric and land-surface variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to reproduce historic runoff conditions from hydrological models using them, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased) climate model data itself is sometimes disputed among scientists. For those reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in hydrology, we should consider it as a source of uncertainty. If not, the application of bias correction methods is either unnecessary in hydro-climatic projections, or safe to use as it does not alter the change signal of river runoff. The results of the present paper highlight the analysis of daily runoff simulated with four different hydrological models in two natural-flow catchments, driven by different regional climate models for a reference and a future period. As expected, bias correction of climate model outputs is important for the reproduction of the runoff regime of the past regardless of the hydrological model used. Then again, its impact on the relative change of flow indicators between reference and future period is weak for most indicators with the exception of the timing of the spring flood peak. Still, our results indicate that the impact of bias correction on runoff indicators increases with bias in the climate simulations.


2016 ◽  
Vol 11 (1s) ◽  
Author(s):  
Joseph Leedale ◽  
Adrian M. Tompkins ◽  
Cyril Caminade ◽  
Anne E. Jones ◽  
Grigory Nikulin ◽  
...  

The effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan. The climate model ensemble generally projects warmer and wetter conditions over EAC. The simulated malaria response appears to be driven by temperature rather than precipitation effects. This reduces the uncertainty due to the climate models, as precipitation trends in tropical regions are very diverse, projecting both drier and wetter conditions with the current state-of-the-art climate model ensemble. The magnitude of the projected changes differed considerably between the two dynamical malaria models, with one much more sensitive to climate change, highlighting that uncertainty in the malaria projections is also associated with the disease modelling approach.


2021 ◽  
Author(s):  
Gaby S. Langendijk ◽  
Diana Rechid ◽  
Daniela Jacob

<p>Urban areas are prone to climate change impacts. A transition towards sustainable and climate-resilient urban areas is relying heavily on useful, evidence-based climate information on urban scales. However, current climate data and information produced by urban or climate models are either not scale compliant for cities, or do not cover essential parameters and/or urban-rural interactions under climate change conditions. Furthermore, although e.g. the urban heat island may be better understood, other phenomena, such as moisture change, are little researched. Our research shows the potential of regional climate models, within the EURO-CORDEX framework, to provide climate projections and information on urban scales for 11km and 3km grid size. The city of Berlin is taken as a case-study. The results on the 11km spatial scale show that the regional climate models simulate a distinct difference between Berlin and its surroundings for temperature and humidity related variables. There is an increase in urban dry island conditions in Berlin towards the end of the 21st century. To gain a more detailed understanding of climate change impacts, extreme weather conditions were investigated under a 2°C global warming and further downscaled to the 3km scale. This enables the exploration of differences of the meteorological processes between the 11km and 3km scales, and the implications for urban areas and its surroundings. The overall study shows the potential of regional climate models to provide climate change information on urban scales.</p>


Geosciences ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 255 ◽  
Author(s):  
Thomas J. Bracegirdle ◽  
Florence Colleoni ◽  
Nerilie J. Abram ◽  
Nancy A. N. Bertler ◽  
Daniel A. Dixon ◽  
...  

Quantitative estimates of future Antarctic climate change are derived from numerical global climate models. Evaluation of the reliability of climate model projections involves many lines of evidence on past performance combined with knowledge of the processes that need to be represented. Routine model evaluation is mainly based on the modern observational period, which started with the establishment of a network of Antarctic weather stations in 1957/58. This period is too short to evaluate many fundamental aspects of the Antarctic and Southern Ocean climate system, such as decadal-to-century time-scale climate variability and trends. To help address this gap, we present a new evaluation of potential ways in which long-term observational and paleo-proxy reconstructions may be used, with a particular focus on improving projections. A wide range of data sources and time periods is included, ranging from ship observations of the early 20th century to ice core records spanning hundreds to hundreds of thousands of years to sediment records dating back 34 million years. We conclude that paleo-proxy records and long-term observational datasets are an underused resource in terms of strategies for improving Antarctic climate projections for the 21st century and beyond. We identify priorities and suggest next steps to addressing this.


Author(s):  
Benjamin Mark Sanderson

Long-term planning for many sectors of society—including infrastructure, human health, agriculture, food security, water supply, insurance, conflict, and migration—requires an assessment of the range of possible futures which the planet might experience. Unlike short-term forecasts for which validation data exists for comparing forecast to observation, long-term forecasts have almost no validation data. As a result, researchers must rely on supporting evidence to make their projections. A review of methods for quantifying the uncertainty of climate predictions is given. The primary tool for quantifying these uncertainties are climate models, which attempt to model all the relevant processes that are important in climate change. However, neither the construction nor calibration of climate models is perfect, and therefore the uncertainties due to model errors must also be taken into account in the uncertainty quantification.Typically, prediction uncertainty is quantified by generating ensembles of solutions from climate models to span possible futures. For instance, initial condition uncertainty is quantified by generating an ensemble of initial states that are consistent with available observations and then integrating the climate model starting from each initial condition. A climate model is itself subject to uncertain choices in modeling certain physical processes. Some of these choices can be sampled using so-called perturbed physics ensembles, whereby uncertain parameters or structural switches are perturbed within a single climate model framework. For a variety of reasons, there is a strong reliance on so-called ensembles of opportunity, which are multi-model ensembles (MMEs) formed by collecting predictions from different climate modeling centers, each using a potentially different framework to represent relevant processes for climate change. The most extensive collection of these MMEs is associated with the Coupled Model Intercomparison Project (CMIP). However, the component models have biases, simplifications, and interdependencies that must be taken into account when making formal risk assessments. Techniques and concepts for integrating model projections in MMEs are reviewed, including differing paradigms of ensembles and how they relate to observations and reality. Aspects of these conceptual issues then inform the more practical matters of how to combine and weight model projections to best represent the uncertainties associated with projected climate change.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2266 ◽  
Author(s):  
Enrique Soriano ◽  
Luis Mediero ◽  
Carlos Garijo

Climate projections provided by EURO-CORDEX predict changes in annual maximum series of daily rainfall in the future in some areas of Spain because of climate change. Precipitation and temperature projections supplied by climate models do not usually fit exactly the statistical properties of the observed time series in the control period. Bias correction methods are used to reduce such errors. This paper seeks to find the most adequate bias correction techniques for temperature and precipitation projections that minimizes the errors between observations and climate model simulations in the control period. Errors in flood quantiles are considered to identify the best bias correction techniques, as flood quantiles are used for hydraulic infrastructure design and safety assessment. In addition, this study aims to understand how the expected changes in precipitation extremes and temperature will affect the catchment response in flood events in the future. Hydrological modelling is required to characterize rainfall-runoff processes adequately in a changing climate, in order to estimate flood changes expected in the future. Four catchments located in the central-western part of Spain have been selected as case studies. The HBV hydrological model has been calibrated in the four catchments by using the observed precipitation, temperature and streamflow data available on a daily scale. Rainfall has been identified as the most significant input to the model, in terms of its influence on flood response. The quantile mapping polynomial correction has been found to be the best bias correction method for precipitation. A general reduction in flood quantiles is expected in the future, smoothing the increases identified in precipitation quantiles by the reduction of soil moisture content in catchments, due to the expected increase in temperature and decrease in mean annual precipitations.


2020 ◽  
Author(s):  
Jason A. Lowe ◽  
Carol McSweeney ◽  
Chris Hewitt

<p>There is clear evidence that, even with the most favourable emission pathways over coming decades, there will be a need for society to adapt to the impacts of climate variability and change. To do this regional, national and local actors need up-to-date information on the changing climate with clear accompanying detail on the robustness of the information. This needs to be communicated to both public and private sector organisations, ideally as part of a process of co-developing solutions.</p><p>EUCP is an H2020 programme that began in December 2017 with the aim of researching and testing the provision of improved climate predictions and projections for Europe for the next 40+ years, and drawing on the expertise of researchers from a number of major climate research institutes across Europe. It is also engaging with users of climate change information through a multiuser forum (MUF) to ensure that what we learn will match the needs of the people who need if for decision making and planning.</p><p>The first big issue that EUCP seeks to address is how better to use ensembles of climate model projections, moving beyond the one-model-one-vote philosophy. Here, the aim is to better understand how model ensembles might be constrained or sub-selected, and how multiple strands of information might be combined into improved climate change narratives or storylines. The second area where EUCP is making progress is in the use of very high-resolution regional climate simulations that are capable of resolving aspects of atmospheric convection. Present day and future simulations from a new generation of regional models ae being analysed in EUCP and will be used in a number of relevant case studies. The third issue that EUCP will consider is how to make future simulations more seamless across those time scales that are most relevant user decision making. This includes generating a better understanding of predictability over time and its sources in initialised forecasts, and also how to transition from the initialised forecasts to longer term boundary forced climate projections.</p><p>This presentation will provide an overview of the challenges being addressed by EUCP and the approaches the project is using.</p><p><br><br></p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document