Single-molecule precursor-based approaches to cobalt sulphide nanostructures

Author(s):  
Karthik Ramasamy ◽  
Weerakanya Maneerprakorn ◽  
Mohammad A. Malik ◽  
Paul O'Brien

Cobalt complexes of 1,1,5,5-tetramethyl-2,4-dithiobiuret, [Co{N(SCNMe 2 ) 2 } 3 ] ( 1 ), and 1,1,5,5-tetraisopropyl-2-thiobiuret, [Co{N(SOCN i Pr 2 ) 2 } 2 ] ( 2 ), have been synthesized and characterized. Both complexes were used as single-molecule precursors for the preparation of cobalt sulphide nanoparticles by thermolysis in hexadecylamine, octadecylamine or oleylamine. The powder X-ray diffraction pattern of as-prepared nanoparticles showed the hexagonal phase of Co 1− x S from complex 1 and mixtures of cubic and hexagonal Co 4 S 3 from complex 2 . Transmission electron microscopy images of material prepared from complex 1 showed spherical and trigonally shaped particles in the size range of 10–15 nm; whereas spheres, rods, trigonal prisms and pentagonally and hexagonally faceted crystallites were observed from complex 2 . This observation is the first of the Co 4 S 3 phase in a nanodispersed form.

2010 ◽  
Vol 663-665 ◽  
pp. 100-103
Author(s):  
Zhen Ni Du ◽  
Yong Cai Zhang ◽  
Zhi You Xu ◽  
Ming Zhang

The synthesis of hexagonal phase Zn1-xMnxS (x = 0–0.05) nanorods was achieved by hydrothermal treatment of zinc manganese diethyldithiocarbamates (Zn1-xMnx-(DDTC)2, x=0–0.05) in 40 mass % hydrate hydrazine aqueous solution at 180 °C for 12 h. The structure, composition and optical property of the obtained products were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra.


2011 ◽  
Vol 364 ◽  
pp. 186-190
Author(s):  
Karim Nazemi Mohammad ◽  
Saeed Sheibani ◽  
Fereshteh Rashchi ◽  
Victor Gonzalez De La Cruz ◽  
Alfonso Caballero Martínez

In this research, use of mechanical alloying method, as a new and effective route for the recycling of spent NiO/Al2O3catalyst to nanostructured nickel aluminate spinel was investigated. Samples were characterized using different techniques such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). It was found that the formation of NiAl2O4was started between 15 to 20 hours of milling and completed after 60 hours. The final particles had relatively spherical shape with the size range of 5-50 nm.


1996 ◽  
Vol 10 (12) ◽  
pp. 567-571 ◽  
Author(s):  
YAN CHEN ◽  
E.G. WANG ◽  
FENG CHEN ◽  
LIPING GUO

High quality crystalline C–N films have been synthesized via hot filament chemical vapor deposition using a gas mixture of nitrogen and methane. Scanning electron microscopy images show that a high density of crystalline clusters has been achieved. The clusters are composed of small columnar crystals (20–200 nm across) with hexagonal facets. Energy dispersive X ray analysis indicates a relative nitrogen:carbon composition of 1.30–2.5. X ray diffraction results indicate the films composed of β- and α- C 3 N 4 phases. Together with transmission electron microscopy analyses, we suggest that an interfacial layer C 3−x Si x N 4 is formed between the silicon substrate and the crystalline carbonnitride films.


2011 ◽  
Vol 284-286 ◽  
pp. 667-670
Author(s):  
Zhen Ni Du ◽  
Zhi You Xu ◽  
Yong Cai Zhang ◽  
Ming Zhang

The synthesis of hexagonal phase Mn-doped CdS (Cd1-xMnxS) nanorods was achieved by solvothermal treatment of a class of easily obtained, air-stable single-source molecular precursors (cadmium manganese diethyldithiocarbamates, Cd1-xMnx-(DDTC)2) in ethylenediamine at 180 °C for 12 h. The structures and compositions of the as-synthesized products were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy and transmission electron microscopy.


2012 ◽  
Vol 585 ◽  
pp. 100-104
Author(s):  
Sudhakar Panday ◽  
B.S. Sunder Daniel ◽  
P. Jeevanandam

Nanocrystalline Co82Ni18 alloy was synthesized by polyol reduction of cobalt-nickel hydroxide precursor. X-ray diffraction results indicated the formation of fcc phase alloy and the crystallite size was found to be about 19 nm. Scanning electron microscopy and transmission electron microscopy images showed the morphology of particles close to spheres and stoichiometry of the precursor and the alloy was obtained by the energy dispersive X-ray analysis. Selected area electron diffraction pattern indicated the polycrystalline nature of the alloy particles. The saturation magnetization of the nanocrystalline alloy was about 107 (emu/g) at room temperature and the M-H measurements at 300 K and 5 K indicated that the nanocrystalline alloy exhibits close to superparamagetic behaviour.


2009 ◽  
Vol 62 (12) ◽  
pp. 1690 ◽  
Author(s):  
Ming Ge ◽  
Changsheng Guo ◽  
Lu Liu ◽  
Baoquan Zhang ◽  
Zhen Zhou

CuInS2 microspheres have been prepared via a solvothermal route employing synthetic In2S3 microspheres as templates. X-ray diffraction analysis reveals that CuInS2 crystals assembled from In2S3 microsphere building blocks are tetragonal phase. Field emission scanning electron microscopy and transmission electron microscopy images show that the prepared CuInS2 microspheres are constructed by nanosheets. The evolution of crystal structure could be attributed to Cu+ ions inserted into the In2S3 microsphere templates, such that some In3+ ions were replaced and tetragonal CuInS2 crystals were formed during the solvothermal process.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Sign in / Sign up

Export Citation Format

Share Document