scholarly journals Organic spintronics

Author(s):  
I. Bergenti ◽  
V. Dediu ◽  
M. Prezioso ◽  
A. Riminucci

Organic semiconductors are emerging materials in the field of spintronics. Successful achievements include their use as a tunnel barrier in magnetoresistive tunnelling devices and as a medium for spin-polarized current in transport devices. In this paper, we give an overview of the basic concepts of spin transport in organic semiconductors and present the results obtained in the field, highlighting the open questions that have to be addressed in order to improve devices performance and reproducibility. The most challenging perspectives will be discussed and a possible evolution of organic spin devices featuring multi-functional operation is presented.

Author(s):  
Yaoxing Sun ◽  
Bei Zhang ◽  
shidong zhang ◽  
Dan Zhang ◽  
Jiwei Dong ◽  
...  

Based on MoC2 nanoribbons and poly-(terphenylene-butadiynylene) (PTB) molecules, we designed MoC2-PTB molecular spintronic devices and investigated their spin-dependent electron transport properties by using spin-polarized density functional theory and non-equilibrium Green's...


2015 ◽  
Vol 17 (1) ◽  
pp. 013004 ◽  
Author(s):  
B B Chen ◽  
S Wang ◽  
S W Jiang ◽  
Z G Yu ◽  
X G Wan ◽  
...  

2014 ◽  
Vol 543-547 ◽  
pp. 3947-3950
Author(s):  
Shi Wei Ren

In this paper, the spin transport properties of the coblt dimers parrallel to the transport direction and perpendicular to ransprot direction are investigated by using the first principle analysis. Calculation shows that both the coblt dimers parrallel to the transport direction and perpendicular to ransprot direction give obvious spin polarized density of states and current. It is found that the dimer parrallel to the transport direction have larger spin polarization current.The spin polarized efficiency for the parrallel dimer increase steadily with the increase of the bias voltage. But the the spin polarization for the transverse dimer changes greatly.


2004 ◽  
Vol 449-452 ◽  
pp. 1081-1084
Author(s):  
Woong Joon Hwang ◽  
H.J. Lee ◽  
K.I. Lee ◽  
J.M. Lee ◽  
J.Y. Chang ◽  
...  

The spin transport in a lateral spin-injection device with an FeCo/Si/FeCo junction has been investigated. Magnetoresistance (MR) signals were found to appear at low magnetic fields in the range 4 – 300 K. This is attributable to the switching of the magnetization of the two ferromagnetic contacts in the device for certain magnetic fields over which the magnetization in one contact is aligned antiparallel to that in the other. Our results suggest that the spin-polarized electrons are injected from the first contact and, after propagating through the bulk Si, are collected by the second contact.


2012 ◽  
Vol 190 ◽  
pp. 149-152 ◽  
Author(s):  
Natalya V. Vorob’eva ◽  
Aleksei N. Lachinov ◽  
V.M. Kornilov

The experimental results for huge magnetoresistance in polymer/ferromagnet system have been considered. The evidences have been established for the relation of the partially spin-polarized current in the structure and the magnetoresistance events. The model of charge and spin transport of the high-conductive state of wide-band polymer film/ferromagnet heterostructure have been proposed on the base of the experimental data totality.


MRS Bulletin ◽  
2003 ◽  
Vol 28 (7) ◽  
pp. 492-499 ◽  
Author(s):  
Arthur J. Epstein

AbstractThis article is based on a presentation on organic-based magnets given as part of Symposium X—Frontiers of Materials Research on December 4, 2002, at the 2002 Materials Research Society Fall Meeting in Boston. The advent of organic-based magnets opened the opportunity for tuning magnetic properties by molecular design and the discovery of new phenomena that rely on the internal structure of the molecules that make up these magnets. In the past 18 years, numerous classes of organic-based ferromagnets, ferrimagnets, and spin glasses (spins essentially frozen in place without long-range order) have been reported. These materials have magnetic ordering temperatures ranging from <1 K to above room temperature and demonstrate many of the magnetic properties associated with conventional magnets. This article concentrates on new phenomena that are unique to organic-based magnets. Three of these effects—“high-temperature” light-induced magnetism, spin-polarized magnetic organic semiconductors with the potential for spintronics, and the development of fractal magnetic order—are discussed to illustrate the richness of opportunity in organic-based magnets.


Sign in / Sign up

Export Citation Format

Share Document