scholarly journals The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments

Author(s):  
Takafumi Hamaoka ◽  
Kevin K. McCully ◽  
Masatsugu Niwayama ◽  
Britton Chance

Near-infrared spectroscopy (NIRS) has been shown to be one of the tools that can measure oxygenation in muscle and other tissues in vivo . This review paper highlights the progress, specifically in this decade, that has been made for evaluating skeletal muscle oxygenation and oxidative energy metabolism in sport, health and clinical sciences. Development of NIRS technologies has focused on improving quantification of the signal using multiple wavelengths to solve for absorption and scattering coefficients, multiple pathlengths to correct for the influence of superficial skin and fat, and time-resolved and phase-modulated light sources to determine optical pathlengths. In addition, advances in optical imaging with multiple source and detector pairs as well as portability using small wireless detectors have expanded the usefulness of the devices. NIRS measurements have provided information on oxidative metabolism in various athletes during localized exercise and whole-body exercise, as well as training-induced adaptations. Furthermore, NIRS technology has been used in the study of a number of chronic health conditions. Future developments of NIRS technology will include enhancing signal quantification. In addition, advances in NIRS imaging and portability promise to transform how measurements of oxygen utilization are obtained in the future.

2019 ◽  
Vol 9 (11) ◽  
pp. 2366 ◽  
Author(s):  
Laura Di Sieno ◽  
Alberto Dalla Mora ◽  
Alessandro Torricelli ◽  
Lorenzo Spinelli ◽  
Rebecca Re ◽  
...  

In this paper, a time-domain fast gated near-infrared spectroscopy system is presented. The system is composed of a fiber-based laser providing two pulsed sources and two fast gated detectors. The system is characterized on phantoms and was tested in vivo, showing how the gating approach can improve the contrast and contrast-to-noise-ratio for detection of absorption perturbation inside a diffusive medium, regardless of source-detector separation.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2535
Author(s):  
Thomas Stöggl ◽  
Dennis-Peter Born

The aims of the study were to assess the robustness and non-reactiveness of wearable near-infrared spectroscopy (NIRS) technology to monitor exercise intensity during a real race scenario, and to compare oxygenation between muscle groups important for cross-country skiing (XCS). In a single-case study, one former elite XCS (age: 39 years, peak oxygen uptake: 65.6 mL/kg/min) was equipped with four NIRS devices, a high-precision global navigation satellite system (GNSS), and a heart rate (HR) monitor during the Vasaloppet long-distance XCS race. All data were normalized to peak values measured during incremental laboratory roller skiing tests two weeks before the race. HR reflected changes in terrain and intensity, but showed a constant decrease of 0.098 beats per minute from start to finish. Triceps brachii (TRI) muscle oxygen saturation (SmO2) showed an interchangeable pattern with HR and seems to be less affected by drift across the competition (0.027% drop per minute). Additionally, TRI and vastus lateralis (VL) SmO2 revealed specific loading and unloading pattern of XCS in uphill and downhill sections, while rectus abdominus (RA) SmO2 (0.111% drop per minute) reflected fatigue patterns occurring during the race. In conclusion, the present preliminary study shows that NIRS provides a robust and non-reactive method to monitor exercise intensity and fatigue mechanisms when applied in an outdoor real race scenario. As local exercise intensity differed between muscle groups and central exercise intensity (i.e., HR) during whole-body endurance exercise such as XCS, NIRS data measured at various major muscle groups may be used for a more detailed analysis of kinetics of muscle activation and compare involvement of upper body and leg muscles. As TRI SmO2 seemed to be unaffected by central fatigue mechanisms, it may provide an alternative method to HR and GNSS data to monitor exercise intensity.


1994 ◽  
Vol 77 (1) ◽  
pp. 5-10 ◽  
Author(s):  
K. K. McCully ◽  
S. Iotti ◽  
K. Kendrick ◽  
Z. Wang ◽  
J. D. Posner ◽  
...  

Simultaneous measurements of phosphocreatine (PCr) and oxyhemoglobin (HbO2) saturation were made during recovery from exercise in calf muscles of five male subjects. PCr was measured using magnetic resonance spectroscopy in a 2.0-T 78-cm-bore magnet with a 9-cm-diam surface coil. Relative HbO2 saturation was measured as the difference in absorption of 750- and 850-nm light with use of near-infrared spectroscopy. The light source and detectors were 3 cm apart. Exercise consisted of isokinetic plantar flexion in a supine position. Two 5-min submaximal protocols were performed with PCr depletion to 60% of resting values and with pH values of > 7.0. Then two 1-min protocols of rapid plantar flexion were performed to deplete PCr values to 5–20% of resting values with pH values of < 6.8. Areas of PCr peaks (every 8 s) and HbO2 saturation (every 1 s) were fit to a monoexponential function, and a time constant was calculated. The PCr time constant was larger after maximal exercise (68.3 +/- 10.5 s) than after submaximal exercise (36.0 +/- 6.5 s), which is consistent with the effects of low pH on PCr recovery. HbO2 resaturation approximated submaximal PCr recovery and was not different between maximal (29.4 +/- 5.5 s) and submaximal (27.6 +/- 6.0 s) exercise. We conclude that magnetic resonance spectroscopy measurements of PCr recovery and near-infrared spectroscopy measurements of recovery of HbO2 saturation provide similar information as long as muscle pH remains near 7.0.


Author(s):  
Sachiko Kessoku ◽  
Katsuhiko Maruo ◽  
Shinpei Okawa ◽  
Kazuto Masamoto ◽  
Yukio Yamada

Various non-invasive glucose monitoring methods using near-infrared spectroscopy have been investigated although no method has been successful so far. Our previous study has proposed a new promising method utilizing numerically generated absorbance spectra instead of the experimentally acquired absorbance spectra. The method suggests that the correct estimation of the optical properties is very important for numerically generating the absorbance spectra. The purpose of this study is to measure the change in the optical properties of the skin with the change in the blood glucose level in vivo. By measuring the reflectances of light incident on the skin surface at two distances from the incident point, the optical properties of the skin can be estimated. The estimation is a kind of the inverse problem based on the simulation of light propagation in the skin. Phantom experiments have verified the method and in vivo experiments are to be performed.


Sign in / Sign up

Export Citation Format

Share Document