scholarly journals Slow science: the value of long ocean biogeochemistry records

Author(s):  
Stephanie A. Henson

Sustained observations (SOs) have provided invaluable information on the ocean's biology and biogeochemistry for over 50 years. They continue to play a vital role in elucidating the functioning of the marine ecosystem, particularly in the light of ongoing climate change. Repeated, consistent observations have provided the opportunity to resolve temporal and/or spatial variability in ocean biogeochemistry, which has driven exploration of the factors controlling biological parameters and processes. Here, I highlight some of the key breakthroughs in biological oceanography that have been enabled by SOs, which include areas such as trophic dynamics, understanding variability, improved biogeochemical models and the role of ocean biology in the global carbon cycle. In the near future, SOs are poised to make progress on several fronts, including detecting climate change effects on ocean biogeochemistry, high-resolution observations of physical–biological interactions and greater observational capability in both the mesopelagic zone and harsh environments, such as the Arctic. We are now entering a new era for biological SOs, one in which our motivations have evolved from the need to acquire basic understanding of the ocean's state and variability, to a need to understand ocean biogeochemistry in the context of increasing pressure in the form of climate change, overfishing and eutrophication.

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1819
Author(s):  
Eleni S. Bekri ◽  
Polychronis Economou ◽  
Panayotis C. Yannopoulos ◽  
Alexander C. Demetracopoulos

Freshwater resources are limited and seasonally and spatially unevenly distributed. Thus, in water resources management plans, storage reservoirs play a vital role in safeguarding drinking, irrigation, hydropower and livestock water supply. In the last decades, the dams’ negative effects, such as fragmentation of water flow and sediment transport, are considered in decision-making, for achieving an optimal balance between human needs and healthy riverine and coastal ecosystems. Currently, operation of existing reservoirs is challenged by increasing water demand, climate change effects and active storage reduction due to sediment deposition, jeopardizing their supply capacity. This paper proposes a methodological framework to reassess supply capacity and management resilience for an existing reservoir under these challenges. Future projections are derived by plausible climate scenarios and global climate models and by stochastic simulation of historic data. An alternative basic reservoir management scenario with a very low exceedance probability is derived. Excess water volumes are investigated under a probabilistic prism for enabling multiple-purpose water demands. Finally, this method is showcased to the Ladhon Reservoir (Greece). The probable total benefit from water allocated to the various water uses is estimated to assist decision makers in examining the tradeoffs between the probable additional benefit and risk of exceedance.


2014 ◽  
Vol 72 (3) ◽  
pp. 741-752 ◽  
Author(s):  
Miranda C. Jones ◽  
William W. L. Cheung

Abstract Species distribution models (SDMs) are important tools to explore the effects of future global changes in biodiversity. Previous studies show that variability is introduced into projected distributions through alternative datasets and modelling procedures. However, a multi-model approach to assess biogeographic shifts at the global scale is still rarely applied, particularly in the marine environment. Here, we apply three commonly used SDMs (AquaMaps, Maxent, and the Dynamic Bioclimate Envelope Model) to assess the global patterns of change in species richness, invasion, and extinction intensity in the world oceans. We make species-specific projections of distribution shift using each SDM, subsequently aggregating them to calculate indices of change across a set of 802 species of exploited marine fish and invertebrates. Results indicate an average poleward latitudinal shift across species and SDMs at a rate of 15.5 and 25.6 km decade−1 for a low and high emissions climate change scenario, respectively. Predicted distribution shifts resulted in hotspots of local invasion intensity in high latitude regions, while local extinctions were concentrated near the equator. Specifically, between 10°N and 10°S, we predicted that, on average, 6.5 species would become locally extinct per 0.5° latitude under the climate change emissions scenario Representative Concentration Pathway 8.5. Average invasions were predicted to be 2.0 species per 0.5° latitude in the Arctic Ocean and 1.5 species per 0.5° latitude in the Southern Ocean. These averaged global hotspots of invasion and local extinction intensity are robust to the different SDM used and coincide with high levels of agreement.


2010 ◽  
Vol 17 (2) ◽  
pp. 1235-1249 ◽  
Author(s):  
PAUL WASSMANN ◽  
CARLOS M. DUARTE ◽  
SUSANA AGUSTÍ ◽  
MIKAEL K. SEJR

2013 ◽  
Vol 10 (1) ◽  
pp. 1421-1450 ◽  
Author(s):  
S. Henson ◽  
H. Cole ◽  
C. Beaulieu ◽  
A. Yool

Abstract. The seasonal cycle (i.e. phenology) of oceanic primary production (PP) is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in PP itself. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima) and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming) regions, typically found at high latitudes, into weakly seasonal (non-bloom) regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. We conclude that analysis of phytoplankton phenology is not necessarily a shortcut to detecting climate change impacts on ocean productivity.


2016 ◽  
Vol 17 ◽  
pp. 46-56 ◽  
Author(s):  
Elayaperumal Vivekanandan ◽  
Rudolf Hermes ◽  
Chris O’Brien

FACETS ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 105-122
Author(s):  
Andrea Bryndum-Buchholz ◽  
Faelan Prentice ◽  
Derek P. Tittensor ◽  
Julia L. Blanchard ◽  
William W.L. Cheung ◽  
...  

Under climate change, species composition and abundances in high-latitude waters are expected to substantially reconfigure with consequences for trophic relationships and ecosystem services. Outcomes are challenging to project at national scales, despite their importance for management decisions. Using an ensemble of six global marine ecosystem models we analyzed marine ecosystem responses to climate change from 1971 to 2099 in Canada’s Exclusive Economic Zone (EEZ) under four standardized emissions scenarios. By 2099, under business-as-usual emissions (RCP8.5) projected marine animal biomass declined by an average of −7.7% (±29.5%) within the Canadian EEZ, dominated by declines in the Pacific (−24% ± 24.5%) and Atlantic (−25.5% ± 9.5%) areas; these were partially compensated by increases in the Canadian Arctic (+26.2% ± 38.4%). Lower emissions scenarios projected successively smaller biomass changes, highlighting the benefits of stronger mitigation targets. Individual model projections were most consistent in the Atlantic and Pacific, but highly variable in the Arctic due to model uncertainties in polar regions. Different trajectories of future marine biomass changes will require regional-specific responses in conservation and management strategies, such as adaptive planning of marine protected areas and species-specific management plans, to enhance resilience and rebuilding of Canada’s marine ecosystems and commercial fish stocks.


2013 ◽  
Vol 10 (6) ◽  
pp. 4357-4369 ◽  
Author(s):  
S. Henson ◽  
H. Cole ◽  
C. Beaulieu ◽  
A. Yool

Abstract. The seasonal cycle (i.e. phenology) of oceanic primary production (PP) is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in annual mean PP. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima) and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming) regions, typically found at high latitudes, into weakly seasonal (non-bloom) regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate-change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. Monthly resolution model output is found to be inadequate for resolving phenological changes. We conclude that analysis of phytoplankton seasonality is not necessarily a shortcut to detecting climate change impacts on ocean productivity.


2018 ◽  
Author(s):  
Heike K. Lotze ◽  
Derek P. Tittensor ◽  
Andrea Bryndum-Buchholz ◽  
Tyler D. Eddy ◽  
William W. L. Cheung ◽  
...  

AbstractClimate change is shifting the abundance and distribution of marine species with consequences for ecosystem functioning, seafood supply, management and conservation. Several approaches for future projection exist but these have never been compared systematically to assess their variability. We conducted standardized ensemble projections including 6 global fisheries and marine ecosystem models, forced with 2 Earth-system models and 4 emission scenarios in a fished and unfished ocean, to derive average trends and associated uncertainties. Without fishing, mean global animal biomass decreased by 5% (±4%) under low and 17% (±11%) under high emissions by 2100, primarily driven by increasing temperature and decreasing primary production. These climate-change effects were slightly weaker for larger animals and in a fished ocean. Considerable regional variation ranged from strong biomass increases in high latitudes to strong decreases in mid-low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to differences among ecosystem or Earth-system models were similar, suggesting equal need for model improvement. Our ensemble projections provide the most comprehensive outlook on potential climate-driven ecological changes in the ocean to date. Realized future trends will largely depend on how fisheries and management adapt to these changes in a changing climate.


2021 ◽  
Author(s):  
Merin R. Chacko ◽  
Ariane K.A. Goerens ◽  
Jacqueline Oehri ◽  
Elena Plekhanova ◽  
Gabriela Schaepman-Strub

AbstractArctic vegetation types provide food and shelter for fauna, support livelihoods of Northern peoples, and are tightly linked to climate, permafrost soils, lakes, rivers, and the ocean through carbon, energy, water, and nutrient fluxes. Despite its significant role, a comprehensive understanding of climate change effects on Arctic vegetation is lacking. We compare the 2003 baseline with existing 2050 predictions of circumpolar Arctic vegetation type distributions and demonstrate that abundant vegetation types with a proclivity for expansion contribute most to current protected areas. Applying IUCN criteria, we categorize five out of the eight assessed vegetation types as threatened by 2050. Our analyses show that current protected areas are insufficient for the mitigation of climate-imposed threats to these Arctic vegetation types. Therefore, we located potential climate change refugia, areas where vegetation may remain unchanged, at least until 2050, providing the highest potential for safeguarding threatened vegetation types. Our study provides an essential first step to assessing vegetation type vulnerability in the Arctic, but is based on predictions covering only 46% of Arctic landscapes. The co-development of new protective measures by policymakers and indigenous peoples at a pan-Arctic scale requires more robust and spatially complete vegetation predictions. This is essential as increasing pressures from resource exploration and rapid infrastructure development complicate the road to a sustainable development of the rapidly thawing and greening Arctic.


2019 ◽  
Vol 4 (2) ◽  
pp. 57-60
Author(s):  
Casilda Saavedra ◽  
Taibah Alhatem

Climate change is one of the major issues affecting our mother Earth. The change in climate include both the change intemperature and the change in precipitation. Both of these parameters are very crucial to animals and plants where they depend onthem for their survival. Climate change has so many negative impacts on the biodiversity of the Earth especially in the Arctic andAntarctic continents. The rise in temperature decreases the ice coverage which in return reduces the population of the wildlife. Theice coverage is crucial to the biodiversity living in Antarctica where they depend on it for their survival. It’s very important for theirfeeding, breeding, and habitat. However, with the reduction of ice, many animals are becoming close to extinction. One of thosespecies that were negatively impacted by climate change is emperor penguins (Aptenodytes forsteri). These penguins require verylow temperatures in order to breed and populate. Very high temperatures for these penguins could result in decreased population ratearound Antarctica. An analysis was done of emperor penguin population data found in different research papers in conjunction withtemperature anomalies data in Antarctica from 1983 to 2005 from the National Oceanic and Atmospheric Administration (NOAA).The results indicated that there was an inverse relationship between the temperature and the penguin’s population. It was shownthrough the analysis conducted that the temperature impacted the penguins negatively throughout the years since the temperaturewas rising. It decreased their breeding population and chicks count dramatically in all the parts of Antarctica tested.


Sign in / Sign up

Export Citation Format

Share Document