scholarly journals Will Current Protected Areas Harbour Refugia for Threatened Arctic Vegetation Types until 2050? A First Assessment

2021 ◽  
Author(s):  
Merin R. Chacko ◽  
Ariane K.A. Goerens ◽  
Jacqueline Oehri ◽  
Elena Plekhanova ◽  
Gabriela Schaepman-Strub

AbstractArctic vegetation types provide food and shelter for fauna, support livelihoods of Northern peoples, and are tightly linked to climate, permafrost soils, lakes, rivers, and the ocean through carbon, energy, water, and nutrient fluxes. Despite its significant role, a comprehensive understanding of climate change effects on Arctic vegetation is lacking. We compare the 2003 baseline with existing 2050 predictions of circumpolar Arctic vegetation type distributions and demonstrate that abundant vegetation types with a proclivity for expansion contribute most to current protected areas. Applying IUCN criteria, we categorize five out of the eight assessed vegetation types as threatened by 2050. Our analyses show that current protected areas are insufficient for the mitigation of climate-imposed threats to these Arctic vegetation types. Therefore, we located potential climate change refugia, areas where vegetation may remain unchanged, at least until 2050, providing the highest potential for safeguarding threatened vegetation types. Our study provides an essential first step to assessing vegetation type vulnerability in the Arctic, but is based on predictions covering only 46% of Arctic landscapes. The co-development of new protective measures by policymakers and indigenous peoples at a pan-Arctic scale requires more robust and spatially complete vegetation predictions. This is essential as increasing pressures from resource exploration and rapid infrastructure development complicate the road to a sustainable development of the rapidly thawing and greening Arctic.

2021 ◽  
Vol 163 ◽  
pp. 105230
Author(s):  
Michael Weinert ◽  
Moritz Mathis ◽  
Ingrid Kröncke ◽  
Thomas Pohlmann ◽  
Henning Reiss

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1330
Author(s):  
Michelle Knaggs ◽  
Samuel Haché ◽  
Scott E. Nielsen ◽  
Rhiannon F. Pankratz ◽  
Erin Bayne

Research Highlights: The effects of fire on birds in the most northern parts of the boreal forest are understudied. We found distinct differences in bird communities with increasing fire severity in two vegetation types with naturally different burn severity. The highest severity burns tended to have communities dominated by generalist species, regardless of the original vegetation type. Background and Objectives: Wildfire is the primary natural disturbance in the boreal ecosystems of northwestern Canada. Increased wildfire frequency, extent, and severity are expected with climate change in this region. In particular, the proportion of burns that are high severity and the area of peatlands burned are increasing, and how this influences birds is poorly understood. Materials and Methods: We quantified the effects of burn severity (low, moderate, and high severity) in uplands and peatlands on occupancy, density, richness, community composition, and functional diversity using point counts (n = 1158) from the first two years post-fire for two large fires in the Northwest Territories, Canada. Results: Burn severity had a significant effect on the occupancy and density of 86% of our focal species (n = 20). Responses to burn severity depended on vegetation type for four of the 18 species using occupancy and seven of the 18 using density, but were typically in a similar direction. Species richness and functional diversity were lower in areas of high severity burns than unburned areas and low severity burns in peatlands. Richness was not related to severity in uplands, but functional diversity was. Peatlands had higher species richness than uplands in all burn severities, but as burn severity increased the upland and peatland communities became more similar. Conclusions: Our results suggest that high severity burns in both vegetation types support five generalist species and two fire specialists that may benefit from alterations in vegetation structure as a result of climate induced changes to fire regimes. However, eight species avoided burns, particularly birds preferring peatlands, and are likely to be more susceptible to fire-driven changes to their habitat caused by climate change. Understanding the long-term risks to these species from climate change requires additional efforts that link fire to bird populations.


2014 ◽  
Vol 72 (3) ◽  
pp. 741-752 ◽  
Author(s):  
Miranda C. Jones ◽  
William W. L. Cheung

Abstract Species distribution models (SDMs) are important tools to explore the effects of future global changes in biodiversity. Previous studies show that variability is introduced into projected distributions through alternative datasets and modelling procedures. However, a multi-model approach to assess biogeographic shifts at the global scale is still rarely applied, particularly in the marine environment. Here, we apply three commonly used SDMs (AquaMaps, Maxent, and the Dynamic Bioclimate Envelope Model) to assess the global patterns of change in species richness, invasion, and extinction intensity in the world oceans. We make species-specific projections of distribution shift using each SDM, subsequently aggregating them to calculate indices of change across a set of 802 species of exploited marine fish and invertebrates. Results indicate an average poleward latitudinal shift across species and SDMs at a rate of 15.5 and 25.6 km decade−1 for a low and high emissions climate change scenario, respectively. Predicted distribution shifts resulted in hotspots of local invasion intensity in high latitude regions, while local extinctions were concentrated near the equator. Specifically, between 10°N and 10°S, we predicted that, on average, 6.5 species would become locally extinct per 0.5° latitude under the climate change emissions scenario Representative Concentration Pathway 8.5. Average invasions were predicted to be 2.0 species per 0.5° latitude in the Arctic Ocean and 1.5 species per 0.5° latitude in the Southern Ocean. These averaged global hotspots of invasion and local extinction intensity are robust to the different SDM used and coincide with high levels of agreement.


2017 ◽  
pp. 124-132 ◽  
Author(s):  
N. V. Matveyeva ◽  
I. A. Lavrinenko ◽  
O. V. Lavrinenko

The two-day Arctic Vegetation Archive and Classification Workshop, in which twenty-nine individuals (two in absentia) from 9 countries (EU: Czech Republic, Germany, Norway, Slovak Republic, Switzerland, The Netherlands; Russia, USA, Canada) participated, took place at the Czech Academy of Science Building, Prague, Czech Republic, on 30–31 April 2017. An Arctic Vegetation Archive (AVA) is essential for deve­loping an Arctic Vegetation Classification (AVC) and is needed for a variety of international Arctic initiatives that involve Arctic vegetation information. The AVA will gather vegetation and environmental data from approximately 31 000 legacy vegetation plots into a standardized format for vegetation classification and analysis. The primary goal is to develop a stra­tegy for each country to assemble its own archive with common protocols that will later allow the databases to be united into a single AVA using TurboVeg v3 and then use JUICE software to create a Pan Arctic vegetation classification. Several overview and keynote talks set the stage. We reviewed the datasets and plots that are available for each of the floristic provinces in each circumpolar country. Discussions focused on the exchange of data between different database approaches, reflections on the realization of a pan-Arctic vegetation classification, steps still needed to achieve the AVC. At the end of the meeting, the assembled members resolved to accomplish the following within 5 years: – develop a checklist of existing described Arctic vegetation habitat and vegetation types (an Arctic prodromus) according the European Vegetation Classification approach. – develop and use standardized plot-data collection and archiving methods modeled after the European Vegetation Archive and the Alaska Arctic Vegetation Archive. – modify the existing vector-based Circumpolar Arctic Vegetation Map to a raster-based format with 12.5-km resolution, and incorporate modifications based on new knowledge. – work with the Arctic Data Center (ADC) to develop data-sharing methods and rules for Arctic ve­getation data. – contribute to training a new generation of young professional Arctic botanists and vegetation scientists through international field courses at the University of the Arctic and the Association of Polar Early Career Scientists (APECS). There was understanding of the necessity to deve­lop a funding strategy to secure funds for completing the AVA and AVC. Finally we resolved to meet again at Arctic Science Summit Week 2019 in Arkhangelsk, Russia.


Author(s):  
Stephanie A. Henson

Sustained observations (SOs) have provided invaluable information on the ocean's biology and biogeochemistry for over 50 years. They continue to play a vital role in elucidating the functioning of the marine ecosystem, particularly in the light of ongoing climate change. Repeated, consistent observations have provided the opportunity to resolve temporal and/or spatial variability in ocean biogeochemistry, which has driven exploration of the factors controlling biological parameters and processes. Here, I highlight some of the key breakthroughs in biological oceanography that have been enabled by SOs, which include areas such as trophic dynamics, understanding variability, improved biogeochemical models and the role of ocean biology in the global carbon cycle. In the near future, SOs are poised to make progress on several fronts, including detecting climate change effects on ocean biogeochemistry, high-resolution observations of physical–biological interactions and greater observational capability in both the mesopelagic zone and harsh environments, such as the Arctic. We are now entering a new era for biological SOs, one in which our motivations have evolved from the need to acquire basic understanding of the ocean's state and variability, to a need to understand ocean biogeochemistry in the context of increasing pressure in the form of climate change, overfishing and eutrophication.


2016 ◽  
Vol 34 (8) ◽  
pp. 1501-1515 ◽  
Author(s):  
Cameron White

In the last decade, in the context of debates about climate change, the Australian road construction industry has focused on increasing efficiencies within road construction processes. This approach to environmental impact management is congruent with existing (road-centric) trajectories of infrastructure development. At the same time, however, it also institutionalises the systemic environmental impacts of the road network. This article examines the historical conditions within which this focus on construction efficiencies emerged as the basis of practical action. Firstly, it examines the neoliberal strategies that led to the privatisation of the Australian road construction industry in the 1990s. Secondly, these Australian road industry strategies are compared with other industry-centred harm-management initiatives and traced back to the tobacco industry tactics of the 1950s and 1960s. Finally, this article argues for a broader, interdisciplinary approach to the analysis and management of environmental impact.


2021 ◽  
Vol 13 (15) ◽  
pp. 3031
Author(s):  
Stein Rune Karlsen ◽  
Laura Stendardi ◽  
Hans Tømmervik ◽  
Lennart Nilsen ◽  
Ingar Arntzen ◽  
...  

The Arctic is a region that is expected to experience a high increase in temperature. Changes in the timing of phenological phases, such as the onset of growth (as observed by remote sensing), is a sensitive bio-indicator of climate change. In this paper, the study area was the central part of Spitsbergen, Svalbard, located between 77.28°N and 78.44°N. The goals of this study were: (1) to prepare, analyze and present a cloud-free time-series of daily Sentinel-2 NDVI datasets for the 2016 to 2019 seasons, and (2) to demonstrate the use of the dataset in mapping the onset of growth. Due to a short and intense period with greening-up and frequent cloud cover, all the cloud-free Sentinel-2 data were used. The onset of growth was then mapped by a NDVI threshold method, which showed significant correlation (r2 = 0.47, n = 38, p < 0.0001) with ground-based phenocam observation of the onset of growth in seven vegetation types. However, large bias was found between the Sentinel-2 NDVI-based mapped onset of growth and the phenocam-based onset of growth in a moss tundra, which indicates that the data in these vegetation types must be interpreted with care. In 2018, the onset of growth was about 10 days earlier compared to 2017.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Natalia Boulad ◽  
Sattam Al Shogoor ◽  
Wahib Sahwan ◽  
Nedal Al-Ouran ◽  
Brigitta Schütt

The present study aims to use systematic conservation planning to analyse and review the national protected areas (PAs) network in Jordan. The analysis included the application of three modules: the environmental risk surface (ERS), the relative biodiversity index (RBI), and the application of Marxan. The methodology was based on using Marxan to achieve solutions for three scenarios for the PAs network. Marxan was applied to the input data, which included vegetation types, distribution of threatened mammals and plants, locations of currently established PAs and other types of designations. The first two scenarios aimed to conserve 4% and 17%, respectively, of each vegetation type, and 10% and 20%, respectively, of the extent of occurrence of threatened mammals and plants. The third scenario aimed to conserve 17% of each vegetation type and 10% of the extent of occurrence of threatened plants and mammals, except for forest and the Hammada vegetation which had the target of 30% and 4%, respectively. The results of the three scenarios indicated that the boundaries of existing reserves should be extended to achieve the conservation targets. Some currently proposed (PAs), such as the Aqaba Mountains, did not appear in any of the solutions for the three scenarios indicating that the inclusion of these sites in the proposed (PAs) network should be reconsidered. All three scenarios highlighted the importance of having conservation areas between the western and eastern parts of the country. Systematic conservation planning is a structured, replicable, transparent, and defensible method for designing PA networks. It allows for finding efficient solutions building on what is currently conserved and minimizing the fragmentation and cost of the proposed solution for conservation areas.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1197 ◽  
Author(s):  
Alfredo Pérez-Morales ◽  
Francisco Gomariz-Castillo ◽  
Pablo Pardo-Zaragoza

Floods are the climatic factors that cause more significant impacts on transportation infrastructures. This circumstance could get worse, taking into account climate change effects. The literature points out different adaptation measures to minimize the possible increasing effects caused by climate change. Among them is the improvement of the vulnerability of a transport network and Emergency Management Systems. The effective management of emergencies is of vital importance to minimize the potential damage resulting from a catastrophe. Given such circumstances, analysis of the vulnerability of networks is a technique whose results highlight deficiencies and serve as support for future decisions concerning the transformation of the network or the installation of new emergency centers. The main objective of this research is to highlight the vulnerability of the road network in a variety of multi-contingency scenarios related to flooding and to identify the optimal location for a new emergency management center based on that analysis. The results obtained could be used in urban planning tasks to improve the resilience of urban areas in the face of an increase in flood episodes caused by climate change.


Sign in / Sign up

Export Citation Format

Share Document