scholarly journals Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites

Author(s):  
A. Kao ◽  
J. Gao ◽  
K. Pericleous

In the undercooled solidification of pure metals, the dendrite tip velocity has been shown experimentally to have a strong dependence on the intensity of an external magnetic field, exhibiting several maxima and minima. In the experiments conducted in China, the undercooled solidification dynamics of pure Ni was studied using the glass fluxing method. Visual recordings of the progress of solidification are compared at different static fields up to 6 T. The introduction of microscopic convective transport through thermoelectric magnetohydrodynamics is a promising explanation for the observed changes of tip velocities. To address this problem, a purpose-built numerical code was used to solve the coupled equations representing the magnetohydrodynamic, thermal and solidification mechanisms. The underlying phenomena can be attributed to two competing flow fields, which were generated by orthogonal components of the magnetic field, parallel and transverse to the direction of growth. Their effects are either intensified or damped out with increasing magnetic field intensity, leading to the observed behaviour of the tip velocity. The results obtained reflect well the experimental findings. This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’.

Author(s):  
И.А. Ларкин ◽  
Ю.Н. Ханин ◽  
Е.Е. Вдовин

The behavior of the photocurrent in GaAs / AlAs p-i-n heterostructures is studied in a magnetic field parallel to the heterolayers in the wavelength range from 395 to 650 nm. A strong dependence of the non-oscillating component of the photocurrent on the radiation wavelength associated with the suppression of the diffusion current by the magnetic field was found. It is shown that the behavior of the oscillating component of the photocurrent in a magnetic field does not depend on the wavelength of light and is determined by the transfer of electrons through the dimensional quantization level in a triangular near-barrier well. It is shown that the suppression of the oscillating component by the magnetic field is due to the smearing of the level in the triangular well due to the motion of electrons parallel to the walls of the well and perpendicular to the magnetic field.


1979 ◽  
Vol 22 (1) ◽  
pp. 85-96
Author(s):  
Joseph E. Willett ◽  
Sinan Bilikmen ◽  
Behrooz Maraghechi

The stimulated backscattering of electromagnetic ordinary waves from extraordinary waves propagating normal to a magnetic field in a plasma of finite length is studied. A pair of coupled differential equations for the amplitudes of the backscattered and scatterer waves is derived from Maxwell's equations and the moment equations for an inhomogeneous magnetized plasma. Solution of the coupled equations for a homogeneous plasma yields an expression for the growth rate of the absolute instability as a function of plasma length and damping rates of the product waves. The convective regime in which only spatial amplification occurs is discussed. A numerical study of the effects of the magnetic field on Raman and Brillouin backscattering is presented.


2018 ◽  
Vol 96 (5) ◽  
pp. 519-523 ◽  
Author(s):  
K. Kabin ◽  
G. Kalugin ◽  
E. Spanswick ◽  
E. Donovan

In this paper we discuss conditions under which charged particles are confined by an axisymmetric longitudinal magnetic field with power law dependence on the radius. We derive a transcendental equation for the critical speed corresponding to the threshold between bounded and unbounded trajectories of the particles. This threshold speed shows strong dependence on the direction, and this dependence becomes more prominent as the exponent of the power law increases. The equation for threshold speed can be solved exactly for several specific values of the power exponent, but in general it requires a numerical treatment. Remarkably, if the magnetic field magnitude decreases more slowly than the inverse of the radius, charged particles remain confined no matter how large their energies may be.


2004 ◽  
Vol 11 (5/6) ◽  
pp. 647-657 ◽  
Author(s):  
R. A. Treumann ◽  
C. H. Jaroschek ◽  
O. D. Constantinescu ◽  
R. Nakamura ◽  
O. A. Pokhotelov ◽  
...  

Abstract. Mirror mode turbulence is the lowest frequency perpendicular magnetic excitation in magnetized plasma proposed already about half a century ago by Rudakov and Sagdeev (1958) and Chandrasekhar et al. (1958) from fluid theory. Its experimental verification required a relatively long time. It was early recognized that mirror modes for being excited require a transverse pressure (or temperature) anisotropy. In principle mirror modes are some version of slow mode waves. Fluid theory, however, does not give a correct physical picture of the mirror mode. The linear infinitesimally small amplitude physics is described correctly only by including the full kinetic theory and is modified by existing spatial gradients of the plasma parameters which attribute a small finite frequency to the mode. In addition, the mode is propagating only very slowly in plasma such that convective transport is the main cause of flow in it. As the lowest frequency mode it can be expected that mirror modes serve as one of the dominant energy inputs into plasma. This is however true only when the mode grows to large amplitude leaving the linear stage. At such low frequencies, on the other hand, quasilinear theory does not apply as a valid saturation mechanism. Probably the dominant processes are related to the generation of gradients in the plasma which serve as the cause of drift modes thus transferring energy to shorter wavelength propagating waves of higher nonzero frequency. This kind of theory has not yet been developed as it has not yet been understood why mirror modes in spite of their slow growth rate usually are of very large amplitudes indeed of the order of |B/B0|2~O(1). It is thus highly reasonable to assume that mirror modes are instrumental for the development of stationary turbulence in high temperature plasma. Moreover, since the magnetic field in mirror turbulence forms extended though slightly oblique magnetic bottles, low parallel energy particles can be trapped in mirror modes and redistribute energy (cf. for instance, Chisham et al. 1998). Such trapped electrons excite banded whistler wave emission known under the name of lion roars and indicating that the mirror modes contain a trapped particle component while leading to the splitting of particle distributions (see Baumjohann et al., 1999) into trapped and passing particles. The most amazing fact about mirror modes is, however, that they evolve in the practically fully collisionless regime of high temperature plasma where it is on thermodynamic reasons entirely impossible to expel any magnetic field from the plasma. The fact that magnetic fields are indeed locally extracted makes mirror modes similar to "superconducting" structures in matter as known only at extremely low temperatures. Of course, microscopic quantum effects do not play a role in mirror modes. However, it seems that all mirror structures have typical scales of the order of the ion inertial length which implies that mirrors evolve in a regime where the transverse ion and electron motions decouple. In this case the Hall kinetics comes into play. We estimate that in the marginally stationary nonlinear state of the evolution of mirror modes the modes become stretched along the magnetic field with k||=0 and that a small number the order of a few percent of the particle density is responsible only for the screening of the field from the interior of the mirror bubbles.


2000 ◽  
Vol 14 (25n27) ◽  
pp. 3068-3073 ◽  
Author(s):  
G. ROTOLI ◽  
C. DE LEO ◽  
G. GHIGO ◽  
L. GOZZELINO ◽  
C. CAMERLINGO

Recent considerations on the physics of YBa 2 Cu 3 O 7-δ films made possible explaining their transport properties as flow of supercurrents through links between the granular structure of the film. The present work deals with the analysis of the Josephson junction network as a discrete set of parallel junctions (1D array) in quasi-static conditions and is aimed to compare the results of the simulations with the experimental findings, in particular with the plateau-like features in the critical current dependence on the magnetic field. Different regimes and vortex phases have been individuated and discussed.


2021 ◽  
Vol 249 ◽  
pp. 08004
Author(s):  
Louison Thorens ◽  
Knut Jørgen Måløy ◽  
Mickaël Bourgoin ◽  
Stéphane Santucci

We investigate both experimentally and theoretically the apparent mass of a ferromagnetic granular assembly filling a cylindrical container and submitted to a magnetic field B, aligned vertically along the silo. We show that the mass of the ferromagnetic granular column depends strongly on the applied magnetic field. Notably, our measurements deviate strongly from the exponential saturation of the measured mass as a function of the true mass of the grain packing, as predicted by Janssen [H.A. Janssen, Vereins Eutscher Ingenieure Zeitschrift, 1045 (1895)]. In particular, the measured mass of tall columns decreases systematically as the amplitude of the magnetic field increases. We rationalize our experimental findings by considering the induced magnetic dipole-dipole interactions within the whole packing. We show the emergence of a global magnetic radial force along the walls of the silos, fully determined by the external magnetic field. The resulting tunable frictional interactions allows a full control of the effective mass of the ferromagnetic granular column.


1975 ◽  
Vol 2 (6) ◽  
pp. 316-317
Author(s):  
S.B. Pikel’ner

This paper gives a short description and interpretation of some solar magneto-hydrodynamical and plasma phenomena, based mainly on work by the writer and his collaborators (for an extended review see Kaplan et al. 1974).The magnetic field is considered as the main factor responsible for a number of manifestations of solar activity. At the photospheric level active regions are displayed as plages, i.e., bright areas, seen near the limb. This means that the temperature gradient in plages is smaller than in the undisturbed photosphere. The decrease in gradient is a result of an increase of convective transport of energy.


2011 ◽  
Vol 09 (03) ◽  
pp. 883-892 ◽  
Author(s):  
M. A. BOUCHENE ◽  
M. ABDEL-ATY

We study the behaviour of a single Cooper-pair box with a SQUID loop interacting with a magnetic field. We demonstrate the strong dependence of the population and the Pancharatnam phase on the magnetic flux and study the modifications when a temporal drift is present on the magnetic field. Moreover, we show that the Pancharatnam phase is more sensitive to the excitation parameters than the populations, suggesting a sensitive method for controlling the system and/or detecting flux variations.


2021 ◽  
Author(s):  
Gleb Kurskiev ◽  
Vasily K Gusev ◽  
Nikolay Sakharov ◽  
Yury Petrov ◽  
Nikolai Nikolaevich Bakharev ◽  
...  

Abstract The work presents the results of the energy confinement study carried out on the compact spherical tokamak (ST) Globus-M2 with toroidal magnetic field (BT) as high as 0.8 T. A reproducible and stable discharge was obtained with the average plasma density (5-10) 1019 m-3. Despite the increase in the magnetic field, the neutral beam injection (NBI) led to clear and reproducible transition to the H-mode accompanied by a decrease in the turbulence level at the plasma edge. NBI allowed effectively heat the plasma: electron and ion temperatures in the plasma core exceeded 1 keV. In comparison with the previous experiments carried out with BT=0.4 T plasma total stored energy was increased by a factor of 4. The main reason of this phenomenon is a strong dependence of the energy confinement time (τE) on the toroidal magnetic field in the spherical tokamak. It was experimentally confirmed that such kind of dependence is valid for ST with magnetic field up to 0.8 T. It also has been shown that the enhancement of the energy confinement in the Globus-M2 with collisionality decrease is associated with an improvement of both electron and ion heat transport.


2014 ◽  
Vol 1683 ◽  
Author(s):  
Peter S. Riseborough ◽  
S. G. Magalhaes ◽  
E.J. Calegari

ABSTRACTWe examine a novel phase of the underscreened Anderson lattice Model that might pertain to the ”Hidden Ordered” phase of URu2Si2. We show that the system breaks spin-rotational invariance below the critical temperature and spontaneously selects a preferred axis of spin quantization. As a result, the low temperature phase exhibits a magnetic anisotropy, where the electronic properties depend not only on the magnitude of the magnetic field but also on the orientation of the applied field relative to the axis of quantization. The results are discussed in the context of recent experimental findings on URu2Si2.


Sign in / Sign up

Export Citation Format

Share Document