scholarly journals Advances in Cosmochemistry Enabled by Antarctic Meteorites

2020 ◽  
Vol 48 (1) ◽  
pp. 233-258
Author(s):  
Meenakshi Wadhwa ◽  
Timothy J. McCoy ◽  
Devin L. Schrader

At present, meteorites collected in Antarctica dominate the total number of the world's known meteorites. We focus here on the scientific advances in cosmochemistry and planetary science that have been enabled by access to, and investigations of, these Antarctic meteorites. A meteorite recovered during one of the earliest field seasons of systematic searches, Elephant Moraine (EET) A79001, was identified as having originated on Mars based on the composition of gases released from shock melt pockets in this rock. Subsequently, the first lunar meteorite, Allan Hills (ALH) 81005, was also recovered from the Antarctic. Since then, many more meteorites belonging to these two classes of planetary meteorites, as well as other previously rare or unknown classes of meteorites (particularly primitive chondrites and achondrites), have been recovered from Antarctica. Studies of these samples are providing unique insights into the origin and evolution of the Solar System and planetary bodies. ▪  Antarctic meteorites dominate the inventory of the world's known meteorites and provide access to new types of planetary and asteroidal materials. ▪  The first meteorites recognized to be of lunar and martian origin were collected from Antarctica and provided unique constraints on the evolution of the Moon and Mars. ▪  Previously rare or unknown classes of meteorites have been recovered from Antarctica and provide new insights into the origin and evolution of the Solar System.

2021 ◽  
Author(s):  
James Head

<p>The Earth’s Moon is a cornerstone and keystone in the understanding of the origin and evolution of the terrestrial, Earth-like planets.  It is a cornerstone in that most of the other paradigms for the origin, modes of crustal formation (primary, secondary and tertiary), bombardment history, role of impact craters and basins in shaping early planetary surfaces and fracturing and modifying the crust and upper mantle, volcanism and the formation of different types of secondary crust, and petrogenetic models where no samples are available, all have a fundamental foundation in lunar science.  The Moon is a keystone in that knowledge of the Moon holds upright the arch of our understand of the terrestrial planets. It is thus imperative to dedicate significant resources to the continued robotic and human exploration of this most accessible of other terrestrial planetary bodies, and to use this cornerstone and keystone as a way to frame critical questions about the Solar System as a whole, and to explore other planetary bodies to modify and strengthen the lunar paradigm.   </p> <p>What is the legacy, the long-term impact of our efforts? The Apollo Lunar Exploration Program revealed the Earth as a planet, showed the inextricable links of the Earth-Moon system, and made the Solar System our neighborhood. We now ask: What are our origins and where are we heading?: We seek to understand the origin and evolution of the Moon, the Moon’s links to the earliest history of Earth, and its lessons for exploration and understanding of Mars and other terrestrial planets. A basis for our motivation is the innate human qualities of curiosity and exploration, and the societal/species-level need to heed Apollo 16 Commander John Young’s warning that “Single-planet species don’t survive!”. These perspectives impel us to learn the lessons of off-Earth, long-term, long-distance resupply and self-sustaining presence, in order to prepare for the exploration of Mars and other Solar System destinations. </p> <p>Key questions in this lunar exploration endeavor based on a variety of studies and analyses (1-3) include:</p> <p>-How do planetary systems form and evolve over time and when did major events in our Solar System occur?</p> <p>How did planetary interiors differentiate and evolve through time, and how are interior processes expressed through surface-atmosphere interactions?</p> <p>-What processes shape planetary surfaces and how do these surfaces record Solar System history?</p> <p>-How do worlds become habitable and how is habitability sustained over time?</p> <p>-Why are the atmospheres and climates of planetary bodies so diverse, and how did they evolve over time?</p> <p>-Is there life elsewhere in the Solar System?</p> <p>Specific lunar goals and objectives will be outlined in this broad planetary science context.</p> <p> </p> <p>References: 1. Carle Pieters et al. (2018) http://www.planetary.brown.edu/pdfs/5480.pdf, 2. Lunar Exploration Analysis Group, https://www.lpi.usra.edu/leag/. 3) Erica Jawin et al. Planetary Science Priorities for the Moon in the Decade 2023-2033: Lunar Science is Planetary Science.</p>


Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


Author(s):  
Rachel L. Klima ◽  
Noah E. Petro

Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar-wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH − or H 2 O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH − /H 2 O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH − /H 2 O absorption band strengths that differ from their immediate surroundings. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


1972 ◽  
Vol 45 ◽  
pp. 413-418 ◽  
Author(s):  
S. K. Vsekhsvyatskij

It has become evident that comets and other small bodies are indications of eruptive evolution processes occurring in many of the planetary bodies of the solar system. The total number of near-parabolic comets moving in the solar system is 1011 to 1012, but as many as 10 to 15 percent of them are leaving the solar system with hyperbolic velocities. Taking into account also the number of short-period comets that degenerate into asteroids and meteor streams, we have estimated the total number of comets formed during the lifetime of the solar system as 1015 to 1016 (and total mass 1029 to 1031 g). The investigation of comets and other small bodies enables us to evaluate the scale of the processes of cosmic vulcanism and the tremendous internal energy of the planets, that energy being derived from the initial stellar nature of planetary material.


1997 ◽  
Vol 23 (1) ◽  
pp. 263-274

At the 1988 Baltimore General Assembly of the International Astronomical Union, members of several Commissions dealing with planetary science expressed deep concern that no work was being undertaken to identify and avoid pollution problems in interplanetary space beyond the Moon. At that time NASA had convened a conference on problems in cislunar space due to the large and growing numbers of orbiting fragments hazardous to space vehicles. In translunar space this is hardly a problem. However an alarming number of future interplanetary mission proposals were considered for other reasons to be potentially harmful to various solar system bodies and interplanetary space itself.


Author(s):  
Ian A. Crawford ◽  
Katherine H. Joy

The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth–Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth–Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap.


1987 ◽  
Vol 120 ◽  
pp. 469-484
Author(s):  
Ursula B. Marvin

Recent analyses show that, although most meteorites are collisional debris of asteroids, three meteorites collected on the Antarctic ice sheet were projected to Earth from the highlands of the Moon, and eight meteorites have chemical and isotopic compositions suggestive of derivation from Mars. Although meteorites are primarily of interest to planetary scientists for the abundance of clues they hold to the materials and processes that formed the Solar system, they have begun to engage the attention of astrochemists because of isotopic and mineralogical indications that they contain interstellar components. Although each individual observation to this effect is inconclusive, the body of evidence is becoming ever more persuasive. This paper reviews the main classes of meteorites and their probable sources, with special emphasis on components that appear to be exotic to the Solar system.


Geosciences ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 12 ◽  
Author(s):  
Vera Assis Fernandes

The forward planning of the return of Humans to the lunar surface as envisioned by different national and collaborative space agencies requires consideration of the fragility and pristine nature of the lunar surface. Current international treaties are outdated and require immediate action for their update and amendment. This should be taken as an opportunity for self-reflection and potential censoring, enabling a mature, responsible, and iterated sequence of decisions prior to returning. The protocols developed for assessing the ethical and social impacts of Humans on the lunar surface will provide a blueprint for planning future exploration activities on other planetary bodies in the Solar System and beyond.


2020 ◽  
Author(s):  
Cristian Carli ◽  
Francesca Zambon ◽  
Francesca Altieri ◽  
Carlos Brandt ◽  
Angelo Pio Rossi ◽  
...  

<p>The numerous past and present space missions dedicated to the Solar System planetary bodies exploration, provided a huge amount of data so far. In particular, data acquired by cameras and spectrometers allowed for producing morpho-stratigraphic and mineralogical maps for many planets, satellites and minor bodies. Despite the considerable progresses, the integration of these products is still poorly addressed. To date, no geological maps of planetary bodies other than the Earth, containing both the information, are available yet. In this context, one of the main goals the “European Union's Horizon 2020 - PLANetary MAPping (PLANMAP)” project [1] is to provide, for the first time, highly informative geological maps of specific regions of interest on the Moon, Mercury and Mars, taking into account datasets publicly available in the Planetary Data System (PDS) database [2].</p><p>Here, we show the results achieved during the first two years of the project by the PLANMAP “Compositional unit definition Work Package”. In particular, we focused on specific areas, such as Hokusai quadrangle (22°-60° N, 0°-90°W) and Beethoven (13.24°S- 28.39° S; 116.1°- 132.32°W, 630 km diameter) and Rembrandt (24.58°S- 41.19°S, 261.72°- 282.73°W, 716 km diameter) basins on Mercury, and the Apollo basin (10 ° –60 ° S, 125 ° –175 ° W, 492 km diameter) within the northeastern edge of the ~ 2500 km South Pole-Aitken (SPA) basin on the Moon [3]. For this work, we considered the multi-color images acquired by the Mercury Dual Imaging System - Wide Angle Camera (MDIS-WAC) [3] onboard the MESSENGER mission and hyperspectral data provided by the Moon Mineralogy Mapper (M3) [4] onboard the Chandrayaan-1 mission. After data calibration and the instrumental artifacts removal, we have photometrically corrected the data to derive multi- and hyper-spectral reflectance maps, afterwards we defined appropriate spectral indices to eventually obtain the spectral unit maps of these regions of interest. In next step, we will integrate the spectral unit maps obtained with the morpho-stratigraphic ones provided by other PLANMAP work packages [5, 6, 7] to merge the information and finally retrieve geological units.</p><p> </p><p>This work is funded by the European Union’s Horizon 2020 research grant agreement No 776276- PLANMAP and by the Italian Space Agency (ASI) within the SIMBIO-SYS project (ASI-INAF agreement 2017-47-H).</p><p> </p><p><strong>References </strong></p><p><strong> </strong></p><p>[1] https://planmap.eu/</p><p>[2] https://pds.nasa.gov/</p><p>[3] S. Edward Hawkins III et al., 2007, Space Science Reviews, 131, 247–338.</p><p>[4] Pieters, C. E. et al., 2009, CURRENT SCIENCE, 96 (4).</p><p>[5] Brandt, C. et al., 2020 EGU General Assembly 2020.</p><p>[6] Ivanov, M.A., et al., 2018, Journal of Geophysical Research, 123 (10), 2585-2612.</p><p>[7] Wright, J., et al., 2019, 50<sup>th</sup> Lunar and Planetary Science Conference.</p>


Author(s):  
Armin Wedler ◽  
Martin J. Schuster ◽  
Marcus G. Müller ◽  
Bernhard Vodermayer ◽  
Lukas Meyer ◽  
...  

The Earth's moon is currently an object of interest of many space agencies for unmanned robotic missions within this decade. Besides future prospects for building lunar gateways as support to human space flight, the Moon is an attractive location for scientific purposes. Not only will its study give insight on the foundations of the Solar System but also its location, uncontaminated by the Earth's ionosphere, represents a vantage point for the observation of the Sun and planetary bodies outside the Solar System. Lunar exploration has been traditionally conducted by means of single-agent robotic assets, which is a limiting factor for the return of scientific missions. The German Aerospace Center (DLR) is developing fundamental technologies towards increased autonomy of robotic explorers to fulfil more complex mission tasks through cooperation. This paper presents an overview of past, present and future activities of DLR towards highly autonomous systems for scientific missions targeting the Moon and other planetary bodies. The heritage from the Mobile Asteroid Scout (MASCOT), developed jointly by DLR and CNES and deployed on asteroid Ryugu on 3 October 2018 from JAXA's Hayabusa2 spacecraft, inspired the development of novel core technologies towards higher efficiency in planetary exploration. Together with the lessons learnt from the ROBEX project (2012–2017), where a mobile robot autonomously deployed seismic sensors at a Moon analogue site, this experience is shaping the future steps towards more complex space missions. They include the development of a mobile rover for JAXA's Martian Moons eXploration (MMX) in 2024 as well as demonstrations of novel multi-robot technologies at a Moon analogue site on the volcano Mt Etna in the ARCHES project. Within ARCHES, a demonstration mission is planned from the 14 June to 10 July 2021, 1 during which heterogeneous teams of robots will autonomously conduct geological and mineralogical analysis experiments and deploy an array of low-frequency antennas to measure Jovian and solar bursts. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades'.


Sign in / Sign up

Export Citation Format

Share Document