Responses and acclimation to salinity in the adults of some balanomorph barnacles

The responses of a number of barnacles to a wide range of salinity have been studied by observation of the activity and measurement of the depression of freezing point of the blood. In active barnacles of the species Elminius modestus, Balanus balanoides, B. crenatus, B. improvisus, B. hameri, B. balanus and Chthamalus stellatus the blood concentration conforms with changes in the external salinity. The concentration of the blood tends to remain slightly hyperosmotic to the fluid in the mantle cavity, and to the medium. With sudden changes of external salinity the blood concentration conforms within a few hours if cirral activity is maintained. When placed in such low salinities that activity is inhibited, E. modestus, B. balanoides, B. crenatus, B. improvisus, B. balanus and C. stellatus close the opercular valves with the result that the blood and mantle cavity fluid are maintained for some time at a level initially considerably hyperosmotic to the medium, but the blood is still only slightly hyperosmotic to the fluid remaining in the mantle cavity. There is no permanent control, and in time the blood concentration approximates to the external level. E. modestus, B. balanoides and B. improvisus from low salinity estuarine habitats, and B. crenatus after gradual reduction of salinity in the laboratory over a matter of days, exhibit tolerance to lower salinities than do specimens of the same species obtained from, or acclimated to normal salinities. Salinity acclimation is typical of osmoconformers lacking specific organs for effective regulation. It is concluded that the barnacles here tested are osmoconformers, able to adjust to small changes of environmental salinity by tissue acclimation, but evading too severe salinity changes by withdrawing into the protection of the shell. The deep sea B. hameri , however, does not close up when immersed in dilute sea water, and appears to be relatively stenohaline with limited ability to acclimate to low salinity. The intertidal E. modestus and B. balanoides , and the low-tidal to sublittoral B. crenatus , are tolerant, after experimental or natural acclimation, of salinities down to 14 to 17 ‰. The estuarine B. improvisus can, with gradual acclimation, be induced to be active in a salinity of about 2 ‰ . This species is remarkably tolerant of dilution of the blood, and its distribution into regions of low salinity is evidently due to a wide tissue resistance and not to any ability to regulate.

Author(s):  
F. G. T. Holliday ◽  
J. H. S. Blaxter

The salinity tolerance of herring 9-ca 24 cm in length was found to lie between 6‰0 and 40–45‰0.Determinations of changes in weight and blood concentration (by measurement of the freezing-point), when herring were transferred from one salinity to another, demonstrated that extensive changes occurred in the blood. Under these conditions the herring experienced and survived blood concentrations equivalent to salinites of 13–22·5‰. A recovery to near normal (δ0·95 ≡ 15·8‰) took place in all the salinities within the tolerance range.Badly descaled herring in sea water showed large increases in blood concentration before death.A study of the kidney of the herring indicated that the ability to withstand the low salinities for long periods probably rested in the high glomerular count of the kidney.The importance of damage to the skin for survival is discussed in relation to tagging experiments.The results are also discussed in relation to the evolution of the herring.


Author(s):  
John Davenport

When exposed to water of low salinity specimens of Mytilus edulis L. keep their shell valves tightly closed; they do not gape periodically to test the external medium. Exchange of salts and water between the mantle cavity and the environment is thus minimized. Rising salinities are registered by diffusion of salts to the tentaculate portion of the inhalent siphon and not to any other portion of the mantle edge or to any more deeply located structures.


1974 ◽  
Vol 60 (2) ◽  
pp. 321-330
Author(s):  
HELEN LE B. SKAER

1. The serpulid polychaete Mercierella enigmatica is found naturally in a wide range of salinities - from fresh water to 150% sea water (< 1-55‰ < 25.8-1421 mOsm). 2. Changes in body weight, blood volume and blood osmolality have been measured both during and after equilibration of animals with media of altered salinity. 3. The blood remains similar in osmolality to the external medium over a very wide range of salinity (43-1620 mOsm); osmoregulation occurs only at the lowest limit of the natural range. 4. Mercierella enigmatica shows volume regulation; after 4 days of equilibration with a medium of altered salinity the blood volume shows much less change than the blood concentration. 5. During equilibration there appear to be passive movements of both water and salts between the animals and their environment.


1994 ◽  
Vol 193 (1) ◽  
pp. 79-95 ◽  
Author(s):  
J Claiborne ◽  
J Walton ◽  
D Compton-Mccullough

A number of studies have implied a linkage between acid­base and ion exchanges in both freshwater and seawater fish, although little is known about the branchial and renal acid­base transfers involved as the animals move between different salinities. To investigate the role of these transfers in a marine teleost fish as it is exposed to a dilute environment, we measured plasma acid­base values and net movements from fish to water of NH4+, HCO3- and H+ in long-horned sculpin (Myoxocephalus octodecimspinosus) placed in 100 %, 20 %, 8 % or 4 % sea water for 24­48 h. Renal excretion of H+ was also monitored in fish exposed to 4 % sea water. Sculpin proved to be somewhat euryhaline for they were able to maintain plasma ion and acid­base transfers in hypo-osmotic (20 %) sea water, but could not tolerate greater dilutions for more than several days. Plasma pH and carbon dioxide concentration (CCO2) increased in the 20 % and 8 % dilution groups, with CCO2 nearly doubling (control, 4.56 mmol l-1; 8 % group, 8.56 mmol l-1) as a result of a combined increase in the partial pressure of plasma CO2 (PCO2) and [HCO3-]. During a 44­46 h exposure, HCO3- transfers increased progressively in the most dilute water, with animals in the 8 % and 4 % groups exhibiting a net H+ loss that was smaller than that of seawater fish (control, 5.1 mmol kg-1; 8 %, 0.9 mmol kg-1; 4 %, -2.9 mmol kg-1). Animals exposed to 4 % sea water for 24 h and then returned to normal sea water had a variable plasma pH, an elevated CCO2 and a net efflux of H+ that effectively stopped (control, 0.10 mmol kg-1 h-1; 4 %, 0.02 mmol kg-1 h-1; seawater recovery, 0.20 mmol kg-1 h-1) during the low-salinity period. Renal acid excretion remained relatively constant throughout the experiment but only made up a significant portion (approximately 40 %) of the total acid transfers during the 4 % dilution period (control rate approximately 3 µmol kg-1 h-1: 3 % of branchial rate). We postulate that the increase in plasma CCO2 during exposure to low salinity may be due to mobilization of base from the intracellular bone compartment. The decrease in external salinity could induce base loss by alteration of gill ion exchanges (Na+/H+, Cl-/HCO3-) and/or changes in branchial HCO3- permeability. For the first time, we have shown that the effects of a dilute environment on acid­base transfers may be an important limitation to the survival of a euryhaline species in brackish or fresh water.


1993 ◽  
Vol 5 (3) ◽  
pp. 309-322 ◽  
Author(s):  
J.-L. Tison ◽  
D. Ronveaux ◽  
R. D. Lorrain

Chemical, isotopic and crystallographic characteristics of marine ice formed at the base of the Hells Gate Ice Shelf, Terra Nova Bay, allow a better understanding of the dynamics of marine ice accretion under small ice shelves. The observed properties of the different types of frazil ice found in the area immediately behind the ice shelf front, result from a progressive evolution of the individual frazil ice crystals initially accreted at the base of the ice-shelf. Basal melting caused by the descending plumes of water masses at a temperature above their local freezing point, initiates partial melting of the frazil ice crystals. This dilutes the interstitial water and initiates chemical sorting effects as diffusion proceeds from the normal sea water in the free water column to the diluted interstitial water in the loose frazil layer. Different environmental conditions will result in contrasting properties. Where the subglacial interface is sculptured with domes or inverted channels, it will favour the accumulation of thick units of frazil ice, in a calm environment, that will be further protected from convection mixing over long time periods. This will result in the formation of orbicular frazil showing c-axes at random, strong dilution and important sorting effects. On the contrary, where no channel or dome exist, or where those are already filled with frazil, rectangular or wave-like banded frazil will form with properties showing interfacial streaming effects induced by water currents. Strong c-axes concentration at a single maximum, less dilution and weaker chemical sorting effects are then observed. These findings provide a tentative explanation for the apparent contradiction between the very low salinity levels detected in marine ice at the base of ice shelves and the comparatively minor salinity fluctuations in sea water profiles near ice shelves.


1963 ◽  
Vol 40 (2) ◽  
pp. 381-392
Author(s):  
MARY E. TODD

1. The osmoregulatory response of Ligia oceanica and Idotea granulosa to the range of the experimental variables was similar. They were both hyperosmotic relative to the medium and the difference between internal and external concentration increased as the salinity of the medium decreased. 2. In 100% sea water the osmotic concentration of the blood of Ligia oceanica was markedly above that of the medium, whereas in Idotea granulosa the blood was only marginally hyperosmotic. 3. In Ligia oceanica the blood concentration changed little in 100 and 75% sea water, but dropped significantly between 75 and 50% sea water, whereas blood concentration in Idotea granulosa dropped significantly throughout the test range of salinities. 4. The more efficient osmoregulation of Ligia oceanica in 25% sea water is reflected in the mean freezing-point depression of the blood, Δi = 1.65, compared with Δi = 0.90 in Idotea granulosa. 5. In both species the osmotic concentration of the blood was influenced by season, by temperature and by a temperature-salinity interaction. 6. Neither size nor sex of the animal influenced osmotic concentration of the blood.


Author(s):  
John Davenport

The salinity of the water retained within the mantle cavity of mussels after the shell valves have closed in response to falling environmental salinities is influenced by the rate of external salinity change. At high rates of salinity change the retained water salinity is significantly higher than in animals exposed to slowly changing salinities. However, the mantle fluid salinity is not primarily determined by the timing ofx shell valve adduction, but by closure of the exhalant siphon.


Author(s):  
S. K. Eltringham

SUMMARYFreezing-point measurements were made of blood samples taken from specimens of the marine wood-boring isopod Limnoria that had been exposed to sea water of various salinities for 2-3 days. Most of the work was done with L. (L.) tripunctata Menzies, but some preliminary experiements were carried out with L. (L.) lignorum (Rathke) and L. (L.) quadripunctata Holthuis.It was found that the freezing point of the blood averaged 0·17°C above that of the external of medium in both hyp- and hyperosmotic environments. In the absence of any obvious factor which could explain this discrepancy, it is assumed that Limnoria has a certain degree of control over its blood concentrations.Further experiments showed that the blood concentration fell as soon as the animal was introduced to the reduced salinity and levelled off at the hyperosmotic value within a few hours. There was some evidence of a periodicity in the osmoregulation.The possible energetics of osmoregulation in Limnoria are discussed and it is concluded that the amount of energy utilized in the process is unlikely to make any significant inroad into the energy resources available for boring activity.


1994 ◽  
Vol 72 (11) ◽  
pp. 1931-1939 ◽  
Author(s):  
Richard A. Roller ◽  
William B. Stickle

Larval survival and development rates of Strongylocentrotus droebachiensis and Strongylocentrotus pallidus were determined as a function of salinity in two experiments by (i) directly transferring fertilized eggs obtained from adults acclimated to sea water at a salinity of 30‰ to cultures containing seawater at salinities of 30, 27.5, 25, 22.5, 20, 17.5, 15, 12.5, and 10‰ at 10 °C; and (ii) acclimation of adult sea urchins to the salinity–temperature conditions described above for 2, 3, and 4 weeks prior to spawning. Subsequent development occurred under these acclimation conditions. Development rates and percent survival of larvae prior to metamorphosis varied directly with salinity. Survival of S. pallidus plutei to metamorphosis decreased at salinities below 30‰. Strongylocentrotus droebachiensis plutei survived to metamorphosis at 20‰ and above. Lactic acid concentrations in the coelomic cavity fluid of adult S. droebachiensis and S. pallidus acclimated to low salinity were significantly higher than initial controls at 30‰. Cell volumes of fertilized eggs of both species exhibited osmotic swelling when exposed to lowered salinity. LC50 values (‰), development rates, and percent survival to metamorphosis indicate that acclimation of adult urchins to lower salinity prior to spawning and fertilization does not enhance development or survival of embryos of these two species exposed to low salinity. Furthermore, our results show that S. pallidus larvae are stenohaline when compared with larvae of other echinoderm species.


2006 ◽  
Vol 44 ◽  
pp. 134-138 ◽  
Author(s):  
Mats A. Granskog ◽  
Jari Uusikivi ◽  
Alberto Blanco Sequeiros ◽  
Eloni Sonninen

AbstractSalt segregation and isotopic fractionation during sea-ice formation can be parameterized as a function of the ice growth rate. We performed a study to investigate if the salt segregation models derived for saline sea-ice studies are pertinent during the growth of Baltic Sea ice in brackish water. We used a time series of ice-salinity profiles and modeled growth rates to examine the relationship between effective salt segregation and growth rate. The results show that models derived for saline sea water are not directly applicable for use in the brackish waters of the Baltic Sea. We derived a simple model for the effective salt segregation in relation to ice growth rate, for a wide range of growth rates, pertinent for use in low-salinity Baltic Sea conditions and in the future development of a Baltic Sea ice salinity model.


Sign in / Sign up

Export Citation Format

Share Document