Fine structure and molecular organization of the periostracum in a gastropod mollusc Buccinum undatum L. and its relation to similar structural protein systems in other invertebrates

The horny layer of periostracum which covers the shell of Buccinum undatum L. has been studied by a combination of the fine structural techniques including high resolution transmission electron microscopy and scanning electron microscopy as well as by chemical analysis and X-ray diffraction. It has been found that the main structural component is a tectin type protein with globular and probably coiled-coil α-helical regions accompanied by a small amount of polysaccharide. Much of the periostracum is built up of protein sheets superposed in a regular manner and stabilized by some type of covalent cross-linking involving aromatic molecules. The protein is one of the class of structural macromolecules called scleroproteins. Each sheet of protein is made up of molecular sub-units which have a characteristic dumb-bell shape and which are about 32 nm long and 6.5 nm wide at their globular ends. End-to-end long-axis aggregation of these units produces filaments which aggregate further by side-to-side association into ribbons and ultimately sheets. The side-to-side association is always in register and hence the sheets have a major transverse striation repeating at 32 nm intervals. The protein sheets can be ascribed a longitudinal axis in terms of the direction of their component filaments. On this basis it can be shown that successive superposed sheets are rotated in a horizontal plane through an angle of 20-25° relative to one another, in a constant direction either clockwise or anticlockwise. Such helicoidal organization is of the cholesteric liquid crystal type which is often found in a biological context, e.g. chitin fibril disposition in arthropod cuticle. This helicoidal layering of the protein sheets is manifested in oblique sections of periostracum as repeated parabolic lamellae. Irregularities in the form of the parabolic lamellae can be accounted for on the basis of the curvature and extensive folding of the periostracum. The outer and innermost layers of the periostracum tend not to show helicoidal organization but exhibit a different aggregation mode of the dumb-bell-shaped units into a three-dimensional hexagonally packed network matrix. This matrix is much interrupted by vacuoles and localized smooth transitions into the ribbon mode of aggregation. This ability to exist in both fibrous and network aggregation states is comparable to that known among the collagens and muscle proteins. The amino acid compositions and conformations of proteins which can form cholesteric helicoidal systems are reviewed and compared with the protein of Buccinum periostracum. This property is apparently confined to alpha helical rod-shaped proteins and globular tektins. The beta conformation does not favour cholesteric organization. The structures and compositions of other molluscan periostraca and periostracum- like structures from other invertebrate phyla are compared with the periostracum of Buccinum . While all periostraca and functionally related structures have certain basic features in common there is a considerable degree of variation at the molecular and organizational levels.

1986 ◽  
Vol 102 (5) ◽  
pp. 1710-1725 ◽  
Author(s):  
S Tsukita ◽  
S Tsukita ◽  
T Kobayashi ◽  
G Matsumoto

In the preceding paper (Kobayashi, T., S. Tsukita, S. Tsukita, Y. Yamamoto, and G. Matsumoto, 1986, J. Cell Biol., 102:1710-1725), we demonstrated biochemically that the subaxolemmal cytoskeleton of the squid giant axon was highly specialized and mainly composed of tubulin, actin, axolinin, and a 255-kD protein. In this paper, we analyzed morphologically the molecular organization of the subaxolemmal cytoskeleton in situ. For thin section electron microscopy, the subaxolemmal cytoskeleton was chemically fixed by the intraaxonal perfusion of the fixative containing tannic acid. With this fixation method, the ultrastructural integrity was well preserved. For freeze-etch replica electron microscopy, the intraaxonally perfused axon was opened and rapidly frozen by touching its inner surface against a cooled copper block (4 degrees K), thus permitting the direct stereoscopic observation of the cytoplasmic surface of the axolemma. Using these techniques, it became clear that the major constituents of the subaxolemmal cytoskeleton were microfilaments and microtubules. The microfilaments were observed to be associated with the axolemma through a specialized meshwork of thin strands, forming spot-like clusters just beneath the axolemma. These filaments were decorated with heavy meromyosin showing a characteristic arrowhead appearance. The microtubules were seen to run parallel to the axolemma and embedded in the fine three-dimensional meshwork of thin strands. In vitro observations of the aggregates of axolinin and immunoelectron microscopic analysis showed that this fine meshwork around microtubules mainly consisted of axolinin. Some microtubules grazed along the axolemma and associated laterally with it through slender strands. Therefore, we were led to conclude that the axolemma of the squid giant axon was specialized into two domains (microtubule- and microfilament-associated domains) by its underlying cytoskeletons.


Author(s):  
E. Loren Buhle ◽  
Barry E. Knox ◽  
Ueli Aebi

In our efforts to study the three-dimensional structure and molecular organization of ion-motive ATPases by electron microscopy and image processing we have systematically investigated conditions which induce the formation of ordered arrays of these integral membrane proteins. Among them we have explored the effect(s) of vanadate and other multi-valent ions on ATPase crystal formation by starting from published procedures [e.g. 1,2]. Here we present some preliminary results concerned with the packing and molecular organization of vanadate-induced crystalline arrays of a Ca++ transport ATPase in tubular rabbit sarcoplasmic reticulum vesicles.The Ca++ activated ATPase from rabbit sarcoplasmic reticulum was purified as published. Induction of ordered tubular arrays of the protein with vanadate was basically achieved as described, except that the protein was slowly dialysed against a vanadate-containing buffer rather than directly adding the vanadate to the protein. Optimal yields of crystalline arrays were obtained after two days of dialysis at 4°C.


1997 ◽  
Vol 3 (S2) ◽  
pp. 87-88
Author(s):  
P.R. Chipman ◽  
R. Mckenna ◽  
J. Renaudin ◽  
T.S. Baker

Spiroplasma, a wall-free prokaryote of the class Mollicutes, is host to a small, naked, single-stranded DNA, isometric virus. Spiroplasma virus SpV4 belongs to the Microviridae family, members of which are non-enveloped, have icosahedral capsids, release progeny through a lytic cycle, and contain circular DNA.Measurements obtained from negatively stained SpV4 particles revealed a nucleocapsid of 27nm in diameter (figure 1). The three-dimensional structure reported here, obtained from unstained particles suspended in a layer of vitreous ice (figure 2), is in agreement with these earlier results, suggesting a 27nm average distance through the nucleocapsid (figure 3). Unreported in earlier studies is the presence of a 6nm, mushroom-shaped protrusion (made up of a stalk, 2.3nm long and 1.3nm wide, and a globular bud of dimensions ≈4.0×4.0×3.7nm) stemming from an ≈1.5nm deep depression at each of the 3-fold icosahedral axes of the virion. A cross section through the longitudinal axis of one protuberance (figure 4) reveals a cylindrical dimple (≈1.0nm in diameter and 2.3nm deep), originating on the axis of the outer surface of the globular bud domain.


1991 ◽  
Vol 114 (4) ◽  
pp. 701-713 ◽  
Author(s):  
D A Winkelmann ◽  
T S Baker ◽  
I Rayment

Image analysis of electron micrographs of thin-sectioned myosin subfragment-1 (S1) crystals has been used to determine the structure of the myosin head at approximately 25-A resolution. Previous work established that the unit cell of type I crystals of myosin S1 contains eight molecules arranged with orthorhombic space group symmetry P212121 and provided preliminary information on the size and shape of the myosin head (Winkelmann, D. A., H. Mekeel, and I. Rayment. 1985. J. Mol. Biol. 181:487-501). We have applied a systematic method of data collection by electron microscopy to reconstruct the three-dimensional (3D) structure of the S1 crystal lattice. Electron micrographs of thin sections were recorded at angles of up to 50 degrees by tilting the sections about the two orthogonal unit cell axes in sections cut perpendicular to the three major crystallographic axes. The data from six separate tilt series were merged to form a complete data set for 3D reconstruction. This approach has yielded an electron density map of the unit cell of the S1 crystals of sufficient detail. to delineate the molecular envelope of the myosin head. Myosin S1 has a tadpole-shaped molecular envelope that is very similar in appearance to the pear-shaped myosin heads observed by electron microscopy of rotary-shadowed and negatively stained myosin. The molecule is divided into essentially three morphological domains: a large domain on one end of the molecule corresponding to approximately 60% of the total molecular volume, a smaller central domain of approximately 30% of the volume that is separated from the larger domain by a cleft on one side of the molecule, and the smallest domain corresponding to a thin tail-like region containing approximately 10% of the volume. This molecular organization supports models of force generation by myosin which invoke conformational mobility at interdomain junctions within the head.


2015 ◽  
Vol 211 (2) ◽  
pp. 211-214 ◽  
Author(s):  
Justin W. Taraska

Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps—comprehensive nanometer-scale cellular cartographies—will reveal how the molecular organization of cells influences their diverse and changeable activities.


1985 ◽  
Vol 63 (2) ◽  
pp. 281-296 ◽  
Author(s):  
N. D. Read ◽  
A. Beckett

The three-dimensional anatomy of mature perithecia was studied by light and scanning electron microscopy. Freeze-fractured material which was cither frozen-hydrated or freeze-dried received particular attention. The results illustrate certain basic features of fungal multicellular development. All perithecial cellular elements have been classified as either hyphal (hyphallike) or coherent. Elements of the neck peridium, basal peridium, and centrum pseudoparenchyma are coherent. Other elements are hyphal (hyphallike). The internal hyphallike elements are tightly packed within the coherent tissues and surrounded by mucilage. The perithecial "cavity" does not contain empty spaces. All stages of ascus development were observed. Highly vacuolated, irregularly branched hymenial and lateral paraphyses are present and may function as space-making and space-filling structures within the perithecium. The periphyses differentiate into the neck peridium and probably also grip asci prior to ascospore discharge. The basal peridium has one layer and the neck peridium has two layers. The centrum pseudo-parenchyma is flattened in mature perithecia. Comparisons are made with the modes of development undergone by other organisms.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
Lee D. Peachey ◽  
Clara Franzini-Armstrong

The effective study of biological tissues in thick slices of embedded material by high voltage electron microscopy (HVEM) requires highly selective staining of those structures to be visualized so that they are not hidden or obscured by other structures in the image. A tilt pair of micrographs with subsequent stereoscopic viewing can be an important aid in three-dimensional visualization of these images, once an appropriate stain has been found. The peroxidase reaction has been used for this purpose in visualizing the T-system (transverse tubular system) of frog skeletal muscle by HVEM (1). We have found infiltration with lanthanum hydroxide to be particularly useful for three-dimensional visualization of certain aspects of the structure of the T- system in skeletal muscles of the frog. Specifically, lanthanum more completely fills the lumen of the tubules and is denser than the peroxidase reaction product.


Author(s):  
T.D. Pollard ◽  
P. Maupin

In this paper we review some of the contributions that electron microscopy has made to the analysis of actin and myosin from nonmuscle cells. We place particular emphasis upon the limitations of the ultrastructural techniques used to study these cytoplasmic contractile proteins, because it is not widely recognized how difficult it is to preserve these elements of the cytoplasmic matrix for electron microscopy. The structure of actin filaments is well preserved for electron microscope observation by negative staining with uranyl acetate (Figure 1). In fact, to a resolution of about 3nm the three-dimensional structure of actin filaments determined by computer image processing of electron micrographs of negatively stained specimens (Moore et al., 1970) is indistinguishable from the structure revealed by X-ray diffraction of living muscle.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Sign in / Sign up

Export Citation Format

Share Document