The melibiose/Na + symporter of Escherichia coli : kinetic and molecular properties

The role of the co-transported cation in the coupling mechanism of the melibiose permease of Escherichia coli has been investigated by analysing its sugar-binding activity, facilitated diffusion reactions and energy-dependent transport reactions catalysed by the carrier functioning either as an H + , Na + or Li + -sugar symporter. The results suggest that the coupling cation not only acts as an activator for sugar-binding on the carrier but also regulates the rate of dissociation of the co-substrates in the cytoplasm by controlling the stability of the ternary complex cation-sugar—carrier facing the cell interior. Furthermore, there is some evidence that the membrane potential enhances the rate of symport activity by increasing the rate of dissociation of the co-substrates from the carrier in the cellular compartment. Identification of the melibiose permease as a membrane protein of 39 kDa by using a T7 RNA polymerase/promoter expression system is described. Site-directed mutagenesis has been used to replace individual carrier histidine residues by arginine to probe the functional contribution of each of the seven histidine residues to the symport mechanism. Only substitution of arginine for His94 greatly interferes with the carrier function. It is finally shown that mutations affecting the glutamate residue in position 361 inactivate translocation of the co-substrates but not their recognition by the permease.

Microbiology ◽  
2014 ◽  
Vol 160 (6) ◽  
pp. 1267-1277 ◽  
Author(s):  
Elissa F. Liew ◽  
Daochen Tong ◽  
Nicholas V. Coleman ◽  
Andrew J. Holmes

The hydrocarbon monooxygenase (HMO) of Mycobacterium NBB4 is a member of the copper-containing membrane monooxygenase (CuMMO) superfamily, which also contains particulate methane monooxygenases (pMMOs) and ammonia monooxygenases (AMOs). CuMMOs have broad applications due to their ability to catalyse the oxidation of difficult substrates of environmental and industrial relevance. Most of our understanding of CuMMO biochemistry is based on pMMOs and AMOs as models. All three available structures are from pMMOs. These share two metal sites: a dicopper centre coordinated by histidine residues in subunit-B and a ‘variable-metal’ site coordinated by carboxylate and histidine residues from subunit-C. The exact nature and role of these sites is strongly debated. Significant barriers to progress have been the physiologically specialized nature of methanotrophs and autotrophic ammonia-oxidizers, lack of a recombinant expression system for either enzyme and difficulty in purification of active protein. In this study we use the newly developed HMO model system to perform site-directed mutagenesis on the predicted metal-binding residues in the HmoB and HmoC of NBB4 HMO. All mutations of predicted HmoC metal centre ligands abolished enzyme activity. Mutation of a predicted copper-binding residue of HmoB (B-H155V) reduced activity by 81 %. Mutation of a site that shows conservation within physiologically defined subgroups of CuMMOs was shown to reduce relative HMO activity towards larger alkanes. The study demonstrates that the modelled dicopper site of subunit-B is not sufficient for HMO activity and that a metal centre predicted to be coordinated by residues in subunit-C is essential for activity.


2010 ◽  
Vol 192 (21) ◽  
pp. 5799-5805 ◽  
Author(s):  
Sha Cao ◽  
Aizhen Guo ◽  
Gaobing Wu ◽  
Ziduo Liu ◽  
Wei Chen ◽  
...  

ABSTRACT The lethal factor (LF) of Bacillus anthracis is a Zn2+-dependent metalloprotease which plays an important role in anthrax virulence. This study was aimed at identifying the histidine residues that are essential to the catalytic activities of LF. The site-directed mutagenesis was employed to replace the 10 histidine residues in domains II, III, and IV of LF with alanine residues, respectively. The cytotoxicity of these mutants was tested, and the results revealed that the alanine substitution for His-669 completely abolished toxicity to the lethal toxin (LT)-sensitive RAW264.7 cells. The reason for the toxicity loss was further explored. The zinc content of this LF mutant was the same as that of the wild type. Also this LF mutant retained its protective antigan (PA)-binding activity. Finally, the catalytic cleavage activity of this mutant was demonstrated to be drastically reduced. Thus, we conclude that residue His-669 is crucial to the proteolytic activity of LF.


1997 ◽  
Vol 44 (2) ◽  
pp. 275-283 ◽  
Author(s):  
K Bolewska ◽  
H Kozłowska ◽  
G Goch ◽  
B Mikołajek ◽  
A Bierzyński

Calcium binding S100A1 protein consists of two S100 alpha subunits. On the basis of sequence homology to other S100 proteins it is believed that the binding loops are formed by amino-acid residues 19-32 and 62-73 of S100 alpha polypeptide chain. In the oxidized form of the protein the subunits are linked covalently with each other by a disulphide bond between their Cys85 residues. A synthetic gene coding for bovine S100 alpha subunit was constructed and cloned into a derivative of pAED4 plasmid. The gene was expressed in Escherichia coli utilizing the T7 expression system. The expression products were purified and identified using mass spectrometry and by sequencing of their N- and C-termini. Three different forms (a, b, and c) of S100 alpha were produced: with the native sequence, with the initiator methionine at the N-terminus, and with an additional alanine at the C-terminus as well as with the initiator methionine. The material was partly oxidized. Interestingly, only the homodimers of a, b, and c species were formed. The total yield of the protein was about 50 mg/l of culture. Genes coding for Glu32-->Gln and Glu73-->Gln mutants of S100 alpha were obtained by site-directed mutagenesis and expressed in the same system. In both cases similar mixtures of oxidized and reduced a, b, and c species have been obtained. The total yield of E73Q mutant is similar to that of the native protein and that of E32Q lower by about a half. As expected, the mutants of S100 alpha subunits bind only one calcium ion.


2001 ◽  
Vol 183 (22) ◽  
pp. 6532-6537 ◽  
Author(s):  
Xiaoming Yang ◽  
Edward E. Ishiguro

ABSTRACT Amino acid-deprived rplK (previously known asrelC) mutants of Escherichia coli cannot activate (p)ppGpp synthetase I (RelA) and consequently exhibit relaxed phenotypes. The rplK gene encodes ribosomal protein L11, suggesting that L11 is involved in regulating the activity of RelA. To investigate the role of L11 in the stringent response, a derivative ofrplK encoding L11 lacking the N-terminal 36 amino acids (designated ′L11) was constructed. Bacteria overexpressing ′L11 exhibited a relaxed phenotype, and this was associated with an inhibition of RelA-dependent (p)ppGpp synthesis during amino acid deprivation. In contrast, bacteria overexpressing normal L11 exhibited a typical stringent response. The overexpressed ′L11 was incorporated into ribosomes and had no effect on the ribosome-binding activity of RelA. By several methods (yeast two-hybrid, affinity blotting, and copurification), no direct interaction was observed between the C-terminal ribosome-binding domain of RelA and L11. To determine whether the proline-rich helix of L11 was involved in RelA regulation, the Pro-22 residue was replaced with Leu by site-directed mutagenesis. The overexpression of the Leu-22 mutant derivative of L11 resulted in a relaxed phenotype. These results indicate that the proline-rich helix in the N terminus of L11 is involved in regulating the activity of RelA.


2004 ◽  
Vol 382 (2) ◽  
pp. 667-675 ◽  
Author(s):  
Hiroaki TATENO ◽  
Harry C. WINTER ◽  
Irwin J. GOLDSTEIN

Lectin from the mushroom Polyporus squamosus (PSL) has a unique carbohydrate-binding specificity for sialylated glycoconjugates containing Neu5Acα2,6Galβ1,4Glc/GlcNAc trisaccharide sequences of asparagine-linked glycoproteins. In the present study, we elucidate the molecular basis for its binding specificity as well as establish a consistent source of this useful lectin using a bacterial expression system. cDNA cloning revealed that PSL contains a ricin B chain-like (QXW)3 domain at its N-terminus that is composed of three homologous subdomains (α, β and γ). A recombinant lectin was expressed in Escherichia coli as a fully active, soluble form. It agglutinated rabbit erythrocytes and showed the highest affinity for Neu5Acα2,6Galβ1,4GlcNAc, but not for the sialyl α2,3-linked isomer. We also investigated the structure–function relationship of PSL. A monomeric C-terminal deletion mutant lacking 40% of the lectin's molecular mass retained sugar-binding activity, indicating that the carbohydrate-binding sites are situated in the N-terminal portion of the lectin, whereas the C-terminal portion probably functions in oligomerization and structural stabilization. Mutant constructs that have single amino acid substitutions in the putative sugar-binding sites, based on sequence alignment with the ricin B-chain, indicate that the β and γ subdomains are most probably sugar-binding sites. The recombinantly expressed lectin will be a valuable reagent for the detection of the Neu5Acα2,6Galβ1,4GlcNAc sequence of asparagine-linked glycans.


2017 ◽  
Vol 21 (1) ◽  
pp. 29
Author(s):  
Kartika Sari Dewi ◽  
Asrul Muhamad Fuad

Several studies reported that the expression of various kinds of Single-chain variable fragment (scFv) antibodies in Escherichia coli are significantly influenced by the order of their variable domains. To date, the effect of the order of variable domains in the expression of scFv antibodies against epidermal growth factor receptor variant III (EGFRvIII) has not been reported. This study aimed to compare the expression between VH-linker-VL and VL-linker-VH domain orders of the anti-EGFRvIII scFv antibodies in E. coli expression system. Recombinant plasmids inserted with DNA encoding scFv proteins were transformed into E. coli NiCo21(DE3) competent cells and characterized by colony PCR. The expression of scFv proteins was done by using optimum concentration of inducer. Total proteins, soluble periplasmic and cytoplasmic proteins, also extracellular proteins were isolated, subsequently characterized by SDS-PAGE, Slot Blot, and ImageJ software analyses. The antigen-binding activity of both scFvs proteins against EGFRvIII was observed. The results showed that the relative percentage of scFv expression with VH-linker-VL domain order is higher than that of VL-linker-VH in each compartment. Moreover, both of scFvs proteins have antigen-binding activity against EGFRvIII.


1998 ◽  
Vol 64 (12) ◽  
pp. 4862-4869 ◽  
Author(s):  
Jörg F. Rippmann ◽  
Michaela Klein ◽  
Christian Hoischen ◽  
Bodo Brocks ◽  
Wolfgang J. Rettig ◽  
...  

ABSTRACT Recently it has been demonstrated that L-form cells ofProteus mirabilis (L VI), which lack a periplasmic compartment, can be efficiently used in the production and secretion of heterologous proteins. In search of novel expression systems for recombinant antibodies, we compared levels of single-chain variable-fragment (scFv) production in Escherichia coliJM109 and P. mirabilis L VI, which express four distinct scFvs of potential clinical interest that show differences in levels of expression and in their tendencies to form aggregates upon periplasmic expression. Production of all analyzed scFvs in E. coli was limited by the severe toxic effect of the heterologous product as indicated by inhibition of culture growth and the formation of insoluble aggregates in the periplasmic space, limiting the yield of active product. In contrast, the L-form cells exhibited nearly unlimited growth under the tested production conditions for all scFvs examined. Moreover, expression experiments with P. mirabilis L VI led to scFv concentrations in the range of 40 to 200 mg per liter of culture medium (corresponding to volume yields 33- to 160-fold higher than those with E. coli JM109), depending on the expressed antibody. In a translocation inhibition experiment the secretion of the scFv constructs was shown to be an active transport coupled to the signal cleavage. We suppose that this direct release of the newly synthesized product into a large volume of the growth medium favors folding into the native active structure. The limited aggregation of scFv observed in the P. mirabilis L VI supernatant (occurring in a first-order-kinetics manner) was found to be due to intrinsic features of the scFv and not related to the expression process of the host cells. The P. mirabilis L VI supernatant was found to be advantageous for scFv purification. A two-step chromatography procedure led to homogeneous scFv with high antigen binding activity as revealed from binding experiments with eukaryotic cells.


Sign in / Sign up

Export Citation Format

Share Document