scholarly journals Tissue architecture: the ultimate regulator of epithelial function?

1998 ◽  
Vol 353 (1370) ◽  
pp. 857-870 ◽  
Author(s):  
Carmen Hagios ◽  
André Lochter ◽  
Mina J. Bissell

The architecture of a tissue is defined by the nature and the integrity of its cellular and extracellular compartments, and is based on proper adhesive cell–cell and cell–extracellular matrix interactions. Cadherins and integrins are major adhesion–mediators that assemble epithelial cells together laterally and attach them basally to a subepithelial basement membrane, respectively. Because cell adhesion complexes are linked to the cytoskeleton and to the cellular signalling pathways, they represent checkpoints for regulation of cell shape and gene expression and thus are instructive for cell behaviour and function. This organization allows a reciprocal flow of mechanical and biochemical information between the cell and its microenvironment, and necessitates that cells actively maintain a state of homeostasis within a given tissue context. The loss of the ability of tumour cells to establish correct adhesive interactions with their microenvironment results in disruption of tissue architecture with often fatal consequences for the host organism. This review discusses the role of cell adhesion in the maintenance of tissue structure and analyses how tissue structure regulates epithelial function.

Open Biology ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 190278 ◽  
Author(s):  
Alexandra D. Rusu ◽  
Marios Georgiou

Epithelial cells form highly organized polarized sheets with characteristic cell morphologies and tissue architecture. Cell–cell adhesion and intercellular communication are prerequisites of such cohesive sheets of cells, and cell connectivity is mediated through several junctional assemblies, namely desmosomes, adherens, tight and gap junctions. These cell–cell junctions form signalling hubs that not only mediate cell–cell adhesion but impact on multiple aspects of cell behaviour, helping to coordinate epithelial cell shape, polarity and function. This review will focus on the tight and adherens junctions, constituents of the apical junctional complex, and aims to provide a comprehensive overview of the complex signalling that underlies junction assembly, integrity and plasticity.


2020 ◽  
Vol 21 (2) ◽  
pp. 91-99
Author(s):  
Qian Xiang ◽  
Zhiyan Liu ◽  
Yun Lu ◽  
Jie Mao ◽  
Shuqing Chen ◽  
...  

Aim: Major drawbacks of percutaneous coronary intervention are the high occurrence of repeat revascularization due to restenosis and disease progression. The aim of this study was to find genetic indicators to predict the risk of repeat revascularization. Materials & methods: From April 2015 to June 2016, 143 patients with percutaneous coronary intervention with genetic test results were enrolled. SNPs were measured by OmniZhongHua-8, and the SNPs in pathways genes related to known stenosis-related processes from the KEGG, BioCarta and Gene Cards databases were selected for analysis. Results: Cell–extracellular matrix interactions were the pathways with the most significant SNP ( CDH15 rs72819363) association with repeat revascularization. Compared with CDH13 rs11859453G carriers, the adjusted odds ratio for A carriers was 0.25 and 0.33 at 18 and 30 months. Conclusion: We demonstrated a potential role of the cell–extracellular matrix interactions pathway and the possible biomarker CDH13/CDH15 in the development of coronary repeat revascularization.


Toxicon ◽  
2011 ◽  
Vol 58 (6-7) ◽  
pp. 509-517 ◽  
Author(s):  
Evilin Naname Komegae ◽  
Anderson Daniel Ramos ◽  
Ana Karina Oliveira ◽  
Solange Maria de Toledo Serrano ◽  
Mônica Lopes-Ferreira ◽  
...  

1994 ◽  
Vol 2 (3) ◽  
pp. 225-233 ◽  
Author(s):  
A. Górski ◽  
V. Castronovo ◽  
B. Stepień-Sopniewska ◽  
P. Grieb ◽  
M. Ryba ◽  
...  

2019 ◽  
Vol 63 (3) ◽  
pp. 325-335 ◽  
Author(s):  
Pekka Rappu ◽  
Antti M. Salo ◽  
Johanna Myllyharju ◽  
Jyrki Heino

Abstract Co- and post-translational hydroxylation of proline residues is critical for the stability of the triple helical collagen structure. In this review, we summarise the biology of collagen prolyl 4-hydroxylases and collagen prolyl 3-hydroxylases, the enzymes responsible for proline hydroxylation. Furthermore, we describe the potential roles of hydroxyproline residues in the complex interplay between collagens and other proteins, especially integrin and discoidin domain receptor type cell adhesion receptors. Qualitative and quantitative regulation of collagen hydroxylation may have remarkable effects on the properties of the extracellular matrix and consequently on the cell behaviour.


2021 ◽  
Vol 11 ◽  
Author(s):  
Valentina Fragliasso ◽  
Annalisa Tameni ◽  
Giorgio Inghirami ◽  
Valentina Mularoni ◽  
Alessia Ciarrocchi

Defects in cytoskeleton functions support tumorigenesis fostering an aberrant proliferation and promoting inappropriate migratory and invasive features. The link between cytoskeleton and tumor features has been extensively investigated in solid tumors. However, the emerging genetic and molecular landscape of peripheral T cell lymphomas (PTCL) has unveiled several alterations targeting structure and function of the cytoskeleton, highlighting its role in cell shape changes and the aberrant cell division of malignant T cells. In this review, we summarize the most recent evidence about the role of cytoskeleton in PTCLs development and progression. We also discuss how aberrant signaling pathways, like JAK/STAT3, NPM-ALK, RhoGTPase, and Aurora Kinase, can contribute to lymphomagenesis by modifying the structure and the signaling properties of cytoskeleton.


2010 ◽  
Vol 298 (1) ◽  
pp. C46-C55 ◽  
Author(s):  
Honor L. Glenn ◽  
Zhaohui Wang ◽  
Lawrence M. Schwartz

Acheron (Achn) was originally identified as novel gene that is induced when insect muscles become committed to die at the end of metamorphosis. In separate studies, we have demonstrated that Achn acts upstream of MyoD and is required by mammalian myoblasts to either differentiate or undergo apoptosis following loss of growth factors. In the present study we examined the role of Achn in regulating integrin-extracellular matrix interactions that are required for myogenesis. Both control C2C12 myoblasts and those engineered to express ectopic Achn expressed the fibronectin receptor integrin α5β1 in the presence of growth factors and the laminin receptor α7β1 following growth factor withdrawal. Expression of the laminin receptor was blocked in cells expressing either Achn antisense or an Achn deletion mutant that blocks differentiation. Control cells and those expressing ectopic Achn undergo sequential and transient increases in both substrate adhesion and migration before cell fusion. Blockade of Achn expression reduced these effects on laminin but not on fibronectin. Taken together, these data suggest that Achn may influence differentiation in part via its control of cell adhesion dynamics.


Sign in / Sign up

Export Citation Format

Share Document