scholarly journals Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase

2000 ◽  
Vol 355 (1402) ◽  
pp. 1433-1446 ◽  
Author(s):  
Murray R. Badger ◽  
Susanne von Caemmerer ◽  
Sari Ruuska ◽  
Hiromi Nakano

Linear electron transport in chloroplasts produces a number of reduced components associated with photosystem I (PS I) that may subsequently participate in reactions that reduce O 2 . The two primary reactions that have been extensively studied are: first, the direct reduction of O 2 to superoxide by reduced donors associated with PS I (the Mehler reaction), and second, the rubisco oxygenase (ribulose 1,5-bisphosphate carboxylase oxygenase EC 4.1.1.39) reaction and associated peroxisomal and mitochondrial reactions of the photorespiratory pathway. This paper reviews a number of recent and past studies with higher plants, algae and cyanobacteria that have attempted to quantify O 2 fluxes under various conditions and their contributions to a number of roles, including photon energy dissipation. In C 3 and Crassulacean acid metabolism (CAM) plants, a Mehler O 2 uptake reaction is unlikely to support a significant flow of electron transport (probably less than 10%). In addition, if it were present it would appear to scale with photosynthetic carbon oxidation cycle (PCO) and photosynthetic carbon reduction cycle (PCR) activity. This is supported by studies with antisense tobacco plants with reduced rubisco at low and high temperatures and high light, as well as studies with potatoes, grapes and madrone during water stress. The lack of significant Mehler in these plants directly argues for a strong control of Mehler reaction in the absence of ATP consumption by the PCR and PCO cycles. The difference between C 3 and C 4 plants is primarily that the level of light-dependent O 2 uptake is generally much lower in C 4 plants and is relatively insensitive to the external CO 2 concentration. Such a major difference is readily attributed to the operation of the C 4 CO 2 concentrating mechanism. Algae show a range of lightdependent O 2 uptake rates, similar to C 4 plants. As in C 4 plants, the O 2 uptake appears to be largely insensitive to CO 2 , even in species that lack a CO 2 concentrating mechanism and under conditions that are clearly limiting with respect to inorganic carbon supply. A part explanation for this could be that many algal rubsicos have considerably different oxygenase kinetic properties and exhibit far less oxygenase activity in air. This would lead to the conclusion that perhaps a greater proportion of the observed O 2 uptake may be due to a Mehler reaction and less to rubisco, compared with C 3 plants. In contrast to algae and higher plants, cyanobacteria appear to have a high capacity for Mehler O 2 uptake, which appears to be not well coupled or limited by ATP consumption. It is likely that in all higher plants and algae, which have a well-developed non-photochemical quenching mechanism, non-radiative energy dissipation is the major mechanism for dissipating excess photons absorbed by the light-harvesting complexes under stressful conditions. However, for cyanobacteria, with a lack of significant nonphotochemical quenching, the situation may well be different.

2020 ◽  
Author(s):  
Nicky Atkinson ◽  
Yuwei Mao ◽  
Kher Xing Chan ◽  
Alistair J. McCormick

SummaryPhotosynthetic CO2 fixation in plants is limited by the inefficiency of the CO2-assimilating enzyme Rubisco (D-ribulose-1,5-bisphosphate carboxylase/ oxygenase)1–3. In plants possessing the C3 pathway, which includes most major staple crops, Rubisco is typically evenly distributed throughout the chloroplast stroma. However, in almost all eukaryotic algae Rubisco aggregates within a microcompartment known as the pyrenoid, in association with a CO2-concentrating mechanism that improves photosynthetic operating efficiency under conditions of low inorganic carbon4. Recent work has shown that the pyrenoid matrix is a phase-separated, liquid-like condensate5. In the alga Chlamydomonas reinhardtii, condensation is mediated by two components: Rubisco and the linker protein EPYC1 (Essential Pyrenoid Component 1)6,7. Here we show that expression of mature EPYC1 and a plant-algal hybrid Rubisco leads to spontaneous condensation of Rubisco into a single phase-separated compartment in Arabidopsis chloroplasts, with liquid-like properties similar to a pyrenoid matrix. The condensate displaces the thylakoid membranes and is enriched in hybrid Rubisco containing the algal Rubisco small subunit required for phase separation. Promisingly, photosynthetic CO2 fixation and growth is not impaired in stable transformants compared to azygous segregants. These observations represent a significant initial step towards enhancing photosynthesis in higher plants by introducing an algal CO2-concentrating mechanism, which is predicted to significantly increase the efficiency of photosynthetic CO2 uptake8,9.


1996 ◽  
Vol 51 (9-10) ◽  
pp. 721-728 ◽  
Author(s):  
Klaus P. Bader ◽  
Judith Schüler

Synthetic pyrethroid insecticides with different molecular structures have been investigated with respect to their effect on photosynthetic electron transport reactions in chloroplast suspensions and cell cultures from higher plants. The fluorescence induction curves of tobacco (Nicotiana tabacum) leaves and tomato cells were substantially affected by permethrin and cypermethrin resulting in a strong increase of the maximum fluorescence. Application of different concentrations (0.3-1.2 mᴍ ) of the respective chemical abolishes virtually any kinetics of the normal Kautsky effect. Oxygen evolution from cell cultures from tomato (Lycopersicon peruvianum) was completely inhibited by cypermethrin. Analysis of partial reactions of the photosynthetic electron transport showed that both a methylviologen-mediated Mehler reaction and a ferricyanide-driven Hill reaction were quantitatively inhibited by e.g. fenvalerate. On the other hand, neither a silicomolybdate-driven Hill reaction nor a methylviologen- driven Mehler reaction using dichlorophenol indophenol/ascorbate as electron donors could be inhibited by the pyrethroid. The analyses suggest that pyrethroid insecticides interfere with the photosynthetic electron transport at the same site as urea-type herbicides do. Depending on the molecular structure and on the halogen compound in the molecule, however, different pyrethroids are more or less phytotoxic to the investigated photosynthetic membranes - cypermethrin with two Cl-substituents requires much higher concentrations to be applied for significant inhibition of the electron transport reactions than the Br-derivative deltamethrin does. Moreover, qualitative differences have to be taken into account. In the case of fenvalerate the effect seems to exist in a type of all-or-nothing reaction when the reaction centres are inhibited by the pyrethroid. None of the S-states nor the transition probabilities are specifically influenced by increasing concentrations of fenvalerate. In the case of deltamethrin, however, it was found that the overreduced state S-1 is significantly increased at the expense of both S1 and S0. Moreover, the miss parameter a is increased in the case of deltamethrin addition. The results and the significance of different substituents for the investigated pyrethroids are discussed


1992 ◽  
Vol 47 (1-2) ◽  
pp. 63-68 ◽  
Author(s):  
Rekha Chaturvedi ◽  
M. Singh ◽  
P. V. Sane

Abstract The effect of exposure to strong white light on photosynthetic electron transport reactions of PS I and PS II were investigated in spinach thylakoids in the absence or presence of oxygen. Irrespective of the conditions used for photoinactivation, the damage to PS II was always much more than to PS I. Photoinactivation was severe under anaerobic conditions compared to that in air for the same duration. This shows that the presence of oxygen is required for prevention of photoinactivation of thylakoids. The susceptibility of water-splitting complex in photoinactivation is indicated by our data from experiments with chloride-deficient chloroplast membranes wherein it was observed that the whole chain electron transport from DPC to MV was much less photoinhibited than that from water. The data from the photoinactivation experiments with the Tris-treated thylakoids indicate another photodam age site at or near reaction centre of PS II. DCMU-protected PS II and oxygen-evolving complex from photoinactivation. DCMU protection can also be interpreted in terms of the stability of the PS II complex when it is in S2 state.


Author(s):  
Benedict M. Long ◽  
Britta Förster ◽  
Sacha B. Pulsford ◽  
G. Dean Price ◽  
Murray R. Badger

ABSTRACTMembraneless organelles containing the enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are a common feature of organisms utilizing CO2 concentrating mechanisms (CCMs) to enhance photosynthetic carbon acquisition. In cyanobacteria and proteobacteria, the Rubisco condensate is encapsulated in a proteinaceous shell, collectively termed a carboxysome, while some algae and hornworts have evolved Rubisco condensates known as pyrenoids. In both cases, CO2 fixation is enhanced compared with the free enzyme. Previous mathematical models have attributed the improved function of carboxysomes to the generation of elevated CO2 within the organelle via a co-localized carbonic anhydrase (CA), and inwardly diffusing HCO3- which has accumulated in the cytoplasm via dedicated transporters. Here we present a novel concept in which we consider the net of two protons produced in every Rubisco carboxylase reaction. We evaluate this in a reaction-diffusion, compartment model to investigate functional advantages these protons may provide Rubisco condensates and carboxysomes, prior to the evolution of HCO3- accumulation. Our model highlights that diffusional resistance to reaction species within a condensate allows Rubisco-derived protons to drive the conversion of HCO3- to CO2 via co-localized CA, enhancing both condensate [CO2] and Rubisco rate. Protonation of Rubisco substrate (RuBP) and product (PGA) plays an important role in modulating internal pH and CO2 generation. Application of the model to putative evolutionary ancestors, prior to contemporary cellular HCO3- accumulation, revealed photosynthetic enhancements along a logical sequence of advancements, via Rubisco condensation, to fully-formed carboxysomes. Our model suggests that evolution of Rubisco condensation could be favored under low CO2 and low light environments.


Author(s):  
Wolfgang Haehnel ◽  
Rowan Mitchell ◽  
Andreas Spillman

2020 ◽  
Vol 117 (26) ◽  
pp. 15354-15362 ◽  
Author(s):  
Ricarda Höhner ◽  
Mathias Pribil ◽  
Miroslava Herbstová ◽  
Laura Susanna Lopez ◽  
Hans-Henning Kunz ◽  
...  

In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.


1979 ◽  
Vol 34 (11) ◽  
pp. 1021-1023 ◽  
Author(s):  
J. J. S. van Rensen ◽  
J. H. Hobé

Abstract The herbicide 4,6-dinitro-o-cresol inhibits electron transport to ferricyanide and non-cyclic photophosphorylation for 50% at about 15 μm. At higher concentrations the photosystem I depen­dent Mehler reaction ascorbate/dichlorophenolindophenol to methyl viologen is stimulated, while cyclic photophosphorylation is inhibited. The herbicide thus is an inhibitory uncoupler. Although the chemical structure of 4,6-dinitro-o-cresol is different from that of the diuron-type herbicides, its site and mechanism of action is similar. Both 4,6-dinitro-o-cresol and diuron inhibit electron transport between the primary electron acceptor of Photosystem II and the plastoquinone pool. This causes a closing of the reaction centers of Photosystem II. The interaction with the inhibited molecule however is different for the two herbicides.


2016 ◽  
Vol 43 (5) ◽  
pp. 448 ◽  
Author(s):  
Xiao-Ping Yi ◽  
Ya-Li Zhang ◽  
He-Sheng Yao ◽  
Hong-Hai Luo ◽  
Ling Gou ◽  
...  

To better understand the adaptation mechanisms of the photosynthetic apparatus of cotton plants to water deficit conditions, the influence of water deficit on photosynthesis, chlorophyll a fluorescence and the activities of antioxidant systems were determined simultaneously in Gossypium hirsutum L. cv. Xinluzao 45 (upland cotton) and Gossypium barbadense L. cv. Xinhai 21 (pima cotton). Water deficit decreased photosynthesis in both cotton species, but did not decrease chlorophyll content or induce any sustained photoinhibition in either cotton species. Water deficit increased ETR/4 − AG, where ETR/4 estimates the linear photosynthetic electron flux and AG is the gross rate of carbon assimilation. The increase in ETR/4 − AG, which represents an increase in photorespiration and alternative electron fluxes, was particularly pronounced in Xinluzao 45. In Xinluzao 45, water deficit increased the activities of antioxidative enzymes, as well as the contents of reactive oxygen species (ROS), which are related to the Mehler reaction. In contrast, moderate water deficit particularly increased non-photochemical quenching (NPQ) in Xinhai 21. Our results suggest that Xinluzao 45 relied on enhanced electron transport such as photorespiration and the Mehler reaction to dissipate excess light energy under mild and moderate water deficit. Xinhai 21 used enhanced photorespiration for light energy utilisation under mild water deficit but, when subjected to moderate water deficit, possessed a high capacity for dissipating excess light energy via heat dissipation.


Sign in / Sign up

Export Citation Format

Share Document