scholarly journals Memory for events and their spatial context: models and experiments

2001 ◽  
Vol 356 (1413) ◽  
pp. 1493-1503 ◽  
Author(s):  
Neil Burgess ◽  
Suzanna Becker ◽  
John A. King ◽  
John O'Keefe

The computational role of the hippocampus in memory has been characterized as: (i) an index to disparate neocortical storage sites; (ii) a time–limited store supporting neocortical long–term memory; and (iii) a content–addressable associative memory. These ideas are reviewed and related to several general aspects of episodic memory, including the differences between episodic, recognition and semantic memory, and whether hippocampal lesions differentially affect recent or remote memories. Some outstanding questions remain, such as: what characterizes episodic retrieval as opposed to other forms of read–out from memory; what triggers the storage of an event memory; and what are the neural mechanisms involved? To address these questions a neural–level model of the medial temporal and parietal roles in retrieval of the spatial context of an event is presented. This model combines the idea that retrieval of the rich context of real–life events is a central characteristic of episodic memory, and the idea that medial temporal allocentric representations are used in long–term storage while parietal egocentric representations are used to imagine, manipulate and re–experience the products of retrieval. The model is consistent with the known neural representation of spatial information in the brain, and provides an explanation for the involvement of Papez's circuit in both the representation of heading direction and in the recollection of episodic information. Two experiments relating to the model are briefly described. A functional neuroimaging study of memory for the spatial context of life–like events in virtual reality provides support for the model's functional localization. A neuropsychological experiment suggests that the hippocampus does store an allocentric representation of spatial locations.

2002 ◽  
Vol 55 (4) ◽  
pp. 1057-1080 ◽  
Author(s):  
Neil Burgess

A computational model of how single neurons in and around the rat hippocampus support spatial navigation is reviewed. The extension of this model, to include the retrieval from human long-term memory of spatial scenes and the spatial context of events is discussed. The model explores the link between spatial and mnemonic functions by supposing that retrieval of spatial information from long-term storage requires the imposition of a particular viewpoint. It is consistent with data relating to representational hemispatial neglect and the involvement of the mammillary bodies, anterior thalamus, and hippocampal formation in supporting both episodic recall and the representation of head direction. Some recent behavioural, neuropsychological, and functional neuroimaging experiments are reviewed, in which virtual reality is used to allow controlled study of navigation and memory for events set within a rich large-scale spatial context. These studies provide convergent evidence that the human hippocampus is involved in both tasks, with some lateralization of function (navigation on the right and episodic memory on the left). A further experiment indicates hippocampal involvement in retrieval of spatial information from a shifted viewpoint. I speculate that the hippocampal role in episodic recollection relates to its ability to represent a viewpoint moving within a spatial framework.


2018 ◽  
Author(s):  
Vishnu P. Murty ◽  
Sarah DuBrow ◽  
Lila Davachi

AbstractThe ability for individuals to actively make decisions engages regions within the mesolimbic system and enhances memory for chosen items. In other behavioral contexts, mesolimbic engagement has been shown to enhance episodic memory by supporting consolidation. However, research has yet to investigate how consolidation may support interactions between decision-making and episodic memory. Across two studies, participants encoded items that were occluded by cover screens and could either actively decide which of two items to uncover or were pre-selected by the experimenter. In Study 1, we show that active decision-making reduces forgetting rates across an immediate and 24-hour memory test, a behavioral marker of consolidation. In Study 2, we use functional neuroimaging to characterize putative neural markers of memory consolidation by measuring post-encoding interactions between the hippocampus and perirhinal cortex (PRC). We show that choice-related striatal engagement is associated with increased post-encoding hippocampal-PRC interactions. Finally, we show that a previous reported relationship between choice-related striatal engagement and long-term memory is accounted for by post-encoding hippocampal-PRC interactions. Together these findings support a model by which actively deciding to encode information enhances subsequent consolidation mechanisms to preserve episodic memory for outcomes.


2019 ◽  
Vol 31 (9) ◽  
pp. 1308-1317 ◽  
Author(s):  
Vishnu P. Murty ◽  
Sarah DuBrow ◽  
Lila Davachi

The ability for individuals to actively make decisions engages regions within the mesolimbic system and enhances memory for chosen items. In other behavioral contexts, mesolimbic engagement has been shown to enhance episodic memory by supporting consolidation. However, research has yet to investigate how consolidation may support interactions between decision-making and episodic memory. Across two studies, participants encoded items that were covered by occluder screens and could either actively decide which of two items to uncover or an item was preselected by the experimenter. In Study 1, we show that active decision-making reduces forgetting rates across an immediate and 24-hr memory test, a behavioral marker of consolidation. In Study 2, we use functional neuroimaging to characterize putative neural markers of memory consolidation by measuring interactions between the hippocampus and perirhinal cortex (PRC) during a postencoding period that reexposed participants to elements of the decision-making context without exposing them to memoranda. We show that choice-related striatal engagement is associated with increased postencoding hippocampal–PRC interactions. Finally, we show that a previous reported relationship between choice-related striatal engagement and long-term memory is accounted for by these postencoding hippocampal–PRC interactions. Together, these findings support a model by which actively deciding to encode information enhances memory consolidation to preserve episodic memory for outcomes, a process that may be facilitated by reexposure to the original decision-making context.


2021 ◽  
Vol 226 (4) ◽  
pp. 989-1006
Author(s):  
Ilenia Salsano ◽  
Valerio Santangelo ◽  
Emiliano Macaluso

AbstractPrevious studies demonstrated that long-term memory related to object-position in natural scenes guides visuo-spatial attention during subsequent search. Memory-guided attention has been associated with the activation of memory regions (the medial-temporal cortex) and with the fronto-parietal attention network. Notably, these circuits represent external locations with different frames of reference: egocentric (i.e., eyes/head-centered) in the dorsal attention network vs. allocentric (i.e., world/scene-centered) in the medial temporal cortex. Here we used behavioral measures and fMRI to assess the contribution of egocentric and allocentric spatial information during memory-guided attention. At encoding, participants were presented with real-world scenes and asked to search for and memorize the location of a high-contrast target superimposed in half of the scenes. At retrieval, participants viewed again the same scenes, now all including a low-contrast target. In scenes that included the target at encoding, the target was presented at the same scene-location. Critically, scenes were now shown either from the same or different viewpoint compared with encoding. This resulted in a memory-by-view design (target seen/unseen x same/different view), which allowed us teasing apart the role of allocentric vs. egocentric signals during memory-guided attention. Retrieval-related results showed greater search-accuracy for seen than unseen targets, both in the same and different views, indicating that memory contributes to visual search notwithstanding perspective changes. This view-change independent effect was associated with the activation of the left lateral intra-parietal sulcus. Our results demonstrate that this parietal region mediates memory-guided attention by taking into account allocentric/scene-centered information about the objects' position in the external world.


2021 ◽  
pp. 003329412198899
Author(s):  
Robert I. Block ◽  
Gerry Jager ◽  
Maartje Luijten ◽  
Nick F. Ramsey

Many American and Dutch adolescents use marijuana regularly. There is concern that such use may impair cognitive function more in adolescents than adults. We examined effects of regular marijuana use on long-term memory and perseveration among American and Dutch adolescents. We administered Buschke's Selective Reminding Test (BSRT) to assess long-term memory and the Wisconsin Card Sorting Test (WCST) to assess perseveration in male teenagers. Usable test data were obtained for 12 American marijuana users, 13 American controls, 9 Dutch marijuana users, and 12 Dutch controls. In BSRT, users showed lower overall long-term storage than controls (adjusted means ± SE's for numbers of words per trial of 9.4 ± 0.2, 13.4 ± 0.3, 11.7 ± 0.2, and 12.4 ± 0.2 for American users, Dutch users, American controls, and Dutch controls, respectively). Marijuana was associated with memory effects only in American, not Dutch, users. Bivariate Pearson correlations for American and Dutch users combined showed associations of lower total recall with more uses in the previous year and lifetime (r = –0.61 and r = –0.53, respectively); and more perseverative errors with more uses in the previous year (r = 0.55). Some findings were consistent with the possibility that regular adolescent marijuana use causes deficits in cognition, especially memory. However, a causal interpretation cannot be inferred from our findings and is challenging to reconcile with the observation of memory deficits only in American users. Our study was novel in examining the influence of nationality on marijuana's cognitive effects. More studies of this topic should compare effects across nationalities or cultures.


2001 ◽  
Vol 92 (1) ◽  
pp. 223-233
Author(s):  
D. P. McCabe ◽  
D. I. Ben-Tovim ◽  
M. K. Walker ◽  
D. Pomeroy

Do the mental Images of 3-dimensional objects recreate the depth characteristics of the original objects' This investigation of the characteristics of mental images utilized a novel boundary-detection task that required participants to relate a pair of crosses to the boundary of an image mentally projected onto a computer screen. 48 female participants with body attitudes within expected normal range were asked to image their own body and a familiar object from the front and the side. When the visual mental image was derived purely from long-term memory, accuracy was better than chance for the front (64%) and side (63%) of the body and also for the front (55%) and side (68%) of the familiar nonbody object. This suggests that mental images containing depth and spatial information may be generated from information held in long-term memory. Pictorial exposure to views of the front or side of the objects was used to investigate the representations from which this 3-dimensional shape and size information is derived. The results are discussed in terms of three possible representational formats and argue that a front-view 2½-dimensional representation mediates the transfer of information from long-term memory when depth information about the body is required.


2020 ◽  
Vol 31 (1) ◽  
pp. 147-158
Author(s):  
Amanda E Hernan ◽  
J Matthew Mahoney ◽  
Willie Curry ◽  
Seamus Mawe ◽  
Rod C Scott

Abstract Spatial working memory (SWM) is a central cognitive process during which the hippocampus and prefrontal cortex (PFC) encode and maintain spatial information for subsequent decision-making. This occurs in the context of ongoing computations relating to spatial position, recall of long-term memory, attention, among many others. To establish how intermittently presented information is integrated with ongoing computations we recorded single units, simultaneously in hippocampus and PFC, in control rats and those with a brain malformation during performance of an SWM task. Neurons that encode intermittent task parameters are also well modulated in time and incorporated into a functional network across regions. Neurons from animals with cortical malformation are poorly modulated in time, less likely to encode task parameters, and less likely to be integrated into a functional network. Our results implicate a model in which ongoing oscillatory coordination among neurons in the hippocampal–PFC network describes a functional network that is poised to receive sensory inputs that are then integrated and multiplexed as working memory. The background temporal modulation is systematically altered in disease, but the relationship between these dynamics and behaviorally relevant firing is maintained, thereby providing potential targets for stimulation-based therapies.


2020 ◽  
Vol 10 (12) ◽  
pp. 937
Author(s):  
Soyiba Jawed ◽  
Hafeez Ullah Amin ◽  
Aamir Saeed Malik ◽  
Ibrahima Faye

The hemispherical encoding retrieval asymmetry (HERA) model, established in 1991, suggests that the involvement of the right prefrontal cortex (PFC) in the encoding process is less than that of the left PFC. The HERA model was previously validated for episodic memory in subjects with brain traumas or injuries. In this study, a revised HERA model is used to investigate long-term memory retrieval from newly learned video-based content for healthy individuals using electroencephalography. The model was tested for long-term memory retrieval in two retrieval sessions: (1) recent long-term memory (recorded 30 min after learning) and (2) remote long-term memory (recorded two months after learning). The results show that long-term memory retrieval in healthy individuals for the frontal region (theta and delta band) satisfies the revised HERA asymmetry model.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ugur Dag ◽  
Zhengchang Lei ◽  
Jasmine Q Le ◽  
Allan Wong ◽  
Daniel Bushey ◽  
...  

Animals consolidate some, but not all, learning experiences into long-term memory. Across the animal kingdom, sleep has been found to have a beneficial effect on the consolidation of recently formed memories into long-term storage. However, the underlying mechanisms of sleep dependent memory consolidation are poorly understood. Here, we show that consolidation of courtship long-term memory in Drosophila is mediated by reactivation during sleep of dopaminergic neurons that were earlier involved in memory acquisition. We identify specific fan-shaped body neurons that induce sleep after the learning experience and activate dopaminergic neurons for memory consolidation. Thus, we provide a direct link between sleep, neuronal reactivation of dopaminergic neurons, and memory consolidation.


2001 ◽  
Vol 24 (1) ◽  
pp. 114-115 ◽  
Author(s):  
S. E. Avons ◽  
Geoff Ward ◽  
Riccardo Russo

The empirical data do not unequivocally support a consistent fixed capacity of four chunks. We propose an alternative account whereby capacity is limited by the precision of specifying the temporal and spatial context in which items appear, that similar psychophysical constraints limit number estimation, and that short term memory (STM) is continuous with long term memory (LTM).


Sign in / Sign up

Export Citation Format

Share Document