scholarly journals Improving water use in crop production

2007 ◽  
Vol 363 (1491) ◽  
pp. 639-658 ◽  
Author(s):  
J.I.L Morison ◽  
N.R Baker ◽  
P.M Mullineaux ◽  
W.J Davies

Globally, agriculture accounts for 80–90% of all freshwater used by humans, and most of that is in crop production. In many areas, this water use is unsustainable; water supplies are also under pressure from other users and are being affected by climate change. Much effort is being made to reduce water use by crops and produce ‘more crop per drop’. This paper examines water use by crops, taking particularly a physiological viewpoint, examining the underlying relationships between carbon uptake, growth and water loss. Key examples of recent progress in both assessing and improving crop water productivity are described. It is clear that improvements in both agronomic and physiological understanding have led to recent increases in water productivity in some crops. We believe that there is substantial potential for further improvements owing to the progress in understanding the physiological responses of plants to water supply, and there is considerable promise within the latest molecular genetic approaches, if linked to the appropriate environmental physiology. We conclude that the interactions between plant and environment require a team approach looking across the disciplines from genes to plants to crops in their particular environments to deliver improved water productivity and contribute to sustainability.

2013 ◽  
Vol 44 ◽  
pp. 95-102
Author(s):  
Saad Ahmad Alghariani

AbstractThe looming water crisis in Libya necessitates taking immediate action to reduce the agricultural water demand that consumes more than 80% of the water supplies. The available information on water use efficiency and crop water productivity reveals that this proportion can be effectively reduced while maintaining the same, if not more, total agricultural production at the national level. Crop water productivity, which is depressingly low, can be doubled through implementing several measures including relocating all major agricultural crops among different hydroclimatic zones and growth seasons; crop selection based on comparative production advantages; realisation of the maximum genetically determined crop yields; and several other measures of demand water management. There is an urgent need to establish the necessary institutional arrangements that can effectively formulate and implement these measures as guided by agricultural research and extension services incorporating all beneficiaries and stakeholders in the process.


2019 ◽  
Vol 62 (5) ◽  
pp. 1377-1393
Author(s):  
Steven R. Evett ◽  
Gary W. Marek ◽  
Paul D. Colaizzi ◽  
David K. Brauer ◽  
Susan A. O’Shaughnessy

Abstract. Greater than 80% of the irrigated area in the Southern High Plains is served by center-pivot irrigation, but the area served by subsurface drip irrigation (SDI) is increasing due to several factors including declining well yields and improved yields and crop water productivity (CWP), particularly for cotton. Not as well established is the degree to which the reduced soil water evaporation (E) in SDI systems affects the soil water balance, water available to the crop, and overall water savings. Grain corn ( L.) and sorghum ( L. Moench) were grown on four large weighing lysimeters at Bushland, Texas, in 2013 (corn), 2014 and 2015 (sorghum), and 2016 (corn). Evapotranspiration (ET) was measured using the lysimeters and using a neutron probe in the surrounding fields. Two of the lysimeters and surrounding fields were irrigated with SDI, and the other two were irrigated with mid-elevation spray application (MESA). The lysimeter-measured evaporative losses were 149 to 151 mm greater from sprinkler-irrigated corn fields than from SDI fields. When growing sorghum, the lysimeter-measured evaporative losses were 44 to 71 mm greater from sprinkler-irrigated fields than from SDI fields. The differences were affected by plant height and became smaller when plant height reached the height of the spray nozzles, indicating that the use of LEPA or LESA nozzles could decrease the evaporative losses from sprinkler-irrigated fields in this region with its high evaporative demand. Annual weather patterns also influenced the differences in evaporative loss, with increased differences in dry years. SDI reduced overall corn water use by 13% to 15%, as determined by neutron probe, while either not significantly affecting yield (2016) or increasing yield by up to 19% (2013) and increasing CWP by 37% (2013) to 13% (2016) as compared with MESA full irrigation. However, sorghum yield decreased by 15% and CWP decreased by 14% in 2014 when using SDI compared with MESA full irrigation due to an overly wet soil profile in the SDI fields and deep percolation that likely caused nutrient losses. In 2015, there were no significant sorghum yield differences between irrigation methods. Sorghum CWP was significantly greater (by 14%) in one SDI field in 2015 compared with MESA fully irrigated sorghum. Overall, sorghum CWP increased by 8% for SDI compared with MESA full irrigation in 2015. These results indicate that SDI will be successful for corn production in the Texas High Plains, but SDI is unlikely to benefit sorghum production. Keywords: Corn, Crop water productivity, Evaporative loss, Evapotranspiration, Irrigation application method, Sorghum, Water use efficiency, Weighing lysimeter.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Sisay Ambachew Mekonnen ◽  
Assefa Sintayehu

Sesame (Sesamum indicum L.) is the leading oil seed crop produced in Ethiopia. It is the second most important agricultural commodity for export market in the country. It is well suited as an alternative crop production system, and it has low crop water requirement with moderate resistance to soil moisture deficit. The low land of North Western Ethiopia is the major sesame producer in the country, and the entire production is from rainfed. The rainfall distribution in North Western Ethiopia is significantly varied. This significant rainfall variability hampers the productivity of sesame. Irrigation agriculture has the potential to stabilize crop production and mitigate the negative impacts of variable rainfall. This study was proposed to identify critical growth stages during which sesame is most vulnerable to soil moisture deficit and to evaluate the crop water productivity of sesame under deficit irrigation. The performance of sesame to stage-wise and uniform deficit irrigation scheduling technique was tested at Gondar Agricultural Research Center (Metema Station), Northern Western Ethiopia. Eight treatments, four stage-wise deficit, two uniform deficit, one above optimal, and one optimal irrigation applications, were evaluated during the 2017 irrigation season. The experiment was designed as a randomized complete block design with three replications. Plant phenological variables, grain yield and crop water productivity, were used for performance evaluation. The result showed that deficit irrigation can be applied both throughout and at selected growth stages except the midseason stage. Imposing deficit during the midseason gave the lowest yield indicating the severe effect of water deficit during flowering and capsule initiation stages. When deficit irrigation is induced throughout, a 25% uniform deficit irrigation can give the highest crop water productivity with no or little yield reduction as compared with optimal irrigation. Implementing deficit irrigation scheduling technique will be beneficial for sesame production. Imposing 75% deficit at the initial, development, late season growth stages or 25% deficit irrigation throughout whole seasons will improve sesame crop water productivity.


Author(s):  
K. Avil Kumar ◽  
M. Uma Devi ◽  
M.D. Reddy ◽  
A. Mani ◽  
D.V. Mahalaxmi ◽  
...  

Background: India is facing high water stress and it is amongst those with the most fragile and uncertain water resource countries in the world. Crop productivity depends on quality of input supply including seeds, fertilizers, pesticides and supported by irrigation facilities. In India, ground water irrigates more than 61% of net cropped area and much of water being used for irrigating rice crop. The disproportionate water uses for crop production results in poor water productivity. The planning of water resources could be achieved by knowing the crop water requirements in different seasons and productivity of water. Hence, study was taken up to assess the water use and productivity of crops under intensively ground water irrigated watershed.Methods: A study conducted to assess the water use and productivity of different crops grown in Kothakunta sub watershed (having 206 working bore wells with cultivated area of 203.5 ha) in Siddipet district of Telangana, India during kharif and rabi season of 2008 to 2012, data were collected from 147 farmers on rice, maize, cotton, potato, flora beans and tomato crops grown under irrigation. The water applied to crops was measured by fixing water meters at the end of water delivery pipe and recorded the quantity of water applied each time. For rice crop four plots were taken and for other crops two plots were taken for measuring the water. The water use and productivity were assessed by using standard procedure. Result: The water productivity was found to be higher to vegetables, which ranged between 2.43 kg of potato, 1.57 kg of beans and 1.26 kg of tomato than cereals (0.79 kg for maize and 0.39 kg for rabi rice) per cubic meter of irrigation water consumed. Water productivity in terms of monetary return (₹) per cubic meter of water consumed was higher with beans (₹ 17.20) in contrast to potato (₹ 16.12). Rice equivalent yield (REY) calculated per cubic meter of irrigation water consumption was very similar to economic return (₹ per cubic meter of water).


2020 ◽  
Author(s):  
Sehouevi Mawuton David Agoungbome ◽  
Nick van de Giesen ◽  
Frank Ohene Annor ◽  
Marie-Claire ten Veldhuis

<p>Africa’s population is growing fast and is expected to double by 2050, meaning the food production must follow the cadence in order to meet the demand. However, one of the major challenges of agriculture in Africa is productivity (World Bank, 2009; IFRI, 2016). For instance, more than 40 million hectares of farmland were dedicated to maize in Africa in 2017 (approx. 20% of world total maize farms), but only 7.4% of the total world maize production came from the African continent (FAO, 2017). This shows the poor productivity which has its causes rooted in lack of good climate and weather information, slow technology uptake and financial support for farmers. In West Africa, where more than 70% of crop production is rain-fed, millions of farmers depend on rainfall, yet the region is one of the most vulnerable and least monitored in terms of climate change and rainfall variability. With a high uncertainty of future climate conditions in the region, one must foresee the big challenges ahead: farmers will be exposed to a lot of damages and losses leading to food insecurity resulting in famine and poverty if measures are not put in place to improve productivity. This study aims at addressing low productivity in agriculture by providing farmers with the right moment to start farming in order to improve efficiency and productivity of crop water use. By analyzing yield response to water availability of specific crops using AquaCrop, the Food and Agriculture Organization crop growth model, we investigate the crop water productivity variability throughout the rainy season and come up with recommendations that help optimize rainfall water use and maximize crop yield.</p>


2018 ◽  
Vol 7 (11) ◽  
pp. 414 ◽  
Author(s):  
Megan Blatchford ◽  
Poolad Karimi ◽  
W.G.M. Bastiaanssen ◽  
Hamideh Nouri

Crop water productivity (CWP) has become a recognised indicator in assessing the state of Sustainable Development Goals (SDG) 6.4—to substantially increase water use efficiency. This indicator, while useful at a global scale, is not comprehensive at a local scale. To fill this gap, this research proposes a CWP framework, that takes advantage of the spatio-temporal availability of remote sensing, that identifies CWP goals and sub-indicators specific to the needs of the targeted domain. Three sub-indicators are considered; (i) a global water productivity score (GWPS), (ii) a local water productivity score (LWPS) and (iii) a land and water use productivity score (YWPS). The GWPS places local CWP in the global context and focuses on maximised CWP. The LWPS differentiates yield zones, normalising for potential product, and focuses on minimising water consumption. The YWPS focuses simultaneously on improving land and water productivity equally. The CWP framework was applied to potato in the West Bank, Palestine. Three management practices were compared under each sub-indicator. The case study showed that fields with high and low performance were different under each sub-indicator. The performance associated with different management practices was also different under each sub-indicator. For example, a winter rotation had a higher performance under the YWPS, the fall rotation had a higher performance under the LWPS and under the GWPS there was little difference. The results showed, that depending on the basin goal, not only do the sub-indicators required change, but also the management practices or approach required to reach those basin goals. This highlights the importance of providing a CWP framework with multiple sub-indicators, suitable to basin needs, to ensure that meeting the SDG 6.4 goal does not jeopardise local objectives.


2006 ◽  
Vol 10 (3) ◽  
pp. 443-454 ◽  
Author(s):  
H. Yang ◽  
L. Wang ◽  
K. C. Abbaspour ◽  
A. J. B. Zehnder

Abstract. Amid an increasing water scarcity in many parts of the world, virtual water trade as both a policy instrument and practical means to balance the local, national and global water budget has received much attention in recent years. Building upon the knowledge of virtual water accounting in the literature, this study assesses the efficiency of water use embodied in the international food trade from the perspectives of exporting and importing countries and at the global and country levels. The investigation reveals that the virtual water flows primarily from countries of high crop water productivity to countries of low crop water productivity, generating a global saving in water use. Meanwhile, the total virtual water trade is dominated by green virtual water, which constitutes a low opportunity cost of water use as opposed to blue virtual water. A sensitivity analysis, however, suggests high uncertainties in the virtual water accounting and the estimation of the scale of water saving. The study also raises awareness of the limited effect of water scarcity on the global virtual water trade and the negative implications of the global water saving for the water use efficiency and food security in importing countries and the environment in exporting countries. The analysis shows the complexity in evaluating the efficiency gains in the international virtual water trade. The findings of the study, nevertheless, call for a greater emphasis on rainfed agriculture to improve the global food security and environmental sustainability.


2021 ◽  
Vol 25 (1) ◽  
pp. 169-191
Author(s):  
Xi Yang ◽  
La Zhuo ◽  
Pengxuan Xie ◽  
Hongrong Huang ◽  
Bianbian Feng ◽  
...  

Abstract. A core goal of sustainable agricultural water resources management is to implement a lower water footprint (WF), i.e. higher water productivity, and to maximize economic benefits in crop production. However, previous studies mostly focused on crop water productivity from a single physical perspective. Little attention is paid to synergies and trade-offs between water consumption and economic value creation of crop production. Distinguishing between blue and green water composition, grain and cash crops, and irrigation and rainfed production modes in China, this study calculates the production-based WF (PWF) and derives the economic value-based WF (EWF) of 14 major crops in 31 provinces for each year over 2001–2016. The synergy evaluation index (SI) of PWF and EWF is proposed to reveal the synergies and trade-offs of crop water productivity and its economic value from the WF perspective. Results show that both the PWF and EWF of most considered crops in China decreased with the increase in crop yield and prices. The high (low) values of both the PWF and EWF of grain crops tended to cluster obviously in space and there existed a huge difference between blue and green water in economic value creation. Moreover, the SI revealed a serious incongruity between PWFs and EWFs both in grain and cash crops. Negative SI values occurred mostly in north-west China for grain crops, and overall more often and with lower values for cash crops. Unreasonable regional planting structure and crop prices resulted in this incongruity, suggesting the need to promote regional coordinated development to adjust the planting structure according to local conditions and to regulate crop prices rationally.


Sign in / Sign up

Export Citation Format

Share Document