scholarly journals Corn and Sorghum ET, E, Yield, and CWP as Affected by Irrigation Application Method: SDI versus Mid-Elevation Spray Irrigation

2019 ◽  
Vol 62 (5) ◽  
pp. 1377-1393
Author(s):  
Steven R. Evett ◽  
Gary W. Marek ◽  
Paul D. Colaizzi ◽  
David K. Brauer ◽  
Susan A. O’Shaughnessy

Abstract. Greater than 80% of the irrigated area in the Southern High Plains is served by center-pivot irrigation, but the area served by subsurface drip irrigation (SDI) is increasing due to several factors including declining well yields and improved yields and crop water productivity (CWP), particularly for cotton. Not as well established is the degree to which the reduced soil water evaporation (E) in SDI systems affects the soil water balance, water available to the crop, and overall water savings. Grain corn ( L.) and sorghum ( L. Moench) were grown on four large weighing lysimeters at Bushland, Texas, in 2013 (corn), 2014 and 2015 (sorghum), and 2016 (corn). Evapotranspiration (ET) was measured using the lysimeters and using a neutron probe in the surrounding fields. Two of the lysimeters and surrounding fields were irrigated with SDI, and the other two were irrigated with mid-elevation spray application (MESA). The lysimeter-measured evaporative losses were 149 to 151 mm greater from sprinkler-irrigated corn fields than from SDI fields. When growing sorghum, the lysimeter-measured evaporative losses were 44 to 71 mm greater from sprinkler-irrigated fields than from SDI fields. The differences were affected by plant height and became smaller when plant height reached the height of the spray nozzles, indicating that the use of LEPA or LESA nozzles could decrease the evaporative losses from sprinkler-irrigated fields in this region with its high evaporative demand. Annual weather patterns also influenced the differences in evaporative loss, with increased differences in dry years. SDI reduced overall corn water use by 13% to 15%, as determined by neutron probe, while either not significantly affecting yield (2016) or increasing yield by up to 19% (2013) and increasing CWP by 37% (2013) to 13% (2016) as compared with MESA full irrigation. However, sorghum yield decreased by 15% and CWP decreased by 14% in 2014 when using SDI compared with MESA full irrigation due to an overly wet soil profile in the SDI fields and deep percolation that likely caused nutrient losses. In 2015, there were no significant sorghum yield differences between irrigation methods. Sorghum CWP was significantly greater (by 14%) in one SDI field in 2015 compared with MESA fully irrigated sorghum. Overall, sorghum CWP increased by 8% for SDI compared with MESA full irrigation in 2015. These results indicate that SDI will be successful for corn production in the Texas High Plains, but SDI is unlikely to benefit sorghum production. Keywords: Corn, Crop water productivity, Evaporative loss, Evapotranspiration, Irrigation application method, Sorghum, Water use efficiency, Weighing lysimeter.

2021 ◽  
Vol 6 (1) ◽  
pp. 37-43
Author(s):  
Gary W. Marek ◽  
Thomas H. Marek ◽  
Steven R. Evett ◽  
Yong Chen ◽  
Kevin R. Heflin ◽  
...  

2013 ◽  
Vol 44 ◽  
pp. 95-102
Author(s):  
Saad Ahmad Alghariani

AbstractThe looming water crisis in Libya necessitates taking immediate action to reduce the agricultural water demand that consumes more than 80% of the water supplies. The available information on water use efficiency and crop water productivity reveals that this proportion can be effectively reduced while maintaining the same, if not more, total agricultural production at the national level. Crop water productivity, which is depressingly low, can be doubled through implementing several measures including relocating all major agricultural crops among different hydroclimatic zones and growth seasons; crop selection based on comparative production advantages; realisation of the maximum genetically determined crop yields; and several other measures of demand water management. There is an urgent need to establish the necessary institutional arrangements that can effectively formulate and implement these measures as guided by agricultural research and extension services incorporating all beneficiaries and stakeholders in the process.


2016 ◽  
Vol 154 (6) ◽  
pp. 1026-1039 ◽  
Author(s):  
H. VAN GAELEN ◽  
N. DELBECQUE ◽  
B. ABRHA ◽  
A. TSEGAY ◽  
D. RAES

SUMMARYWeed infestation is a major yield-reducing factor that also decreases crop water productivity. Yet weeds are often neglected in crop productivity simulation studies, because existing empirical equations and mechanistic models are not widely applicable or have a high demand for input data and calibration. For that reason, AquaCrop, a widely applicable crop water productivity model, was expanded with a weed management module which requires only two easily obtainable input variables: (i) relative leaf cover of weeds, and (ii) weed-induced increase of total canopy cover. Using these inputs, AquaCrop directly simulates soil water content, crop canopy development and production as it is observed in weed-infested fields. Despite this simple approach, AquaCrop performed well to simulate soil water content in the root zone (relative root-mean-square error (RRMSE) of 5–13%), canopy cover (RRMSE of 15–22%), dry above-ground crop biomass during the season (RRMSE of 21–39%) and at maturity (RRMSE of 5–6%) and yield (RRMSE of 11–25%) of barley and wheat grown under different weed infestation levels and environments. The current study illustrates that the AquaCrop model can be used to assess the effect of weed infestation on crop growth and production, using a simple approach that is applicable to diverse environmental and agronomic conditions, even in data-scarce regions.


2007 ◽  
Vol 363 (1491) ◽  
pp. 639-658 ◽  
Author(s):  
J.I.L Morison ◽  
N.R Baker ◽  
P.M Mullineaux ◽  
W.J Davies

Globally, agriculture accounts for 80–90% of all freshwater used by humans, and most of that is in crop production. In many areas, this water use is unsustainable; water supplies are also under pressure from other users and are being affected by climate change. Much effort is being made to reduce water use by crops and produce ‘more crop per drop’. This paper examines water use by crops, taking particularly a physiological viewpoint, examining the underlying relationships between carbon uptake, growth and water loss. Key examples of recent progress in both assessing and improving crop water productivity are described. It is clear that improvements in both agronomic and physiological understanding have led to recent increases in water productivity in some crops. We believe that there is substantial potential for further improvements owing to the progress in understanding the physiological responses of plants to water supply, and there is considerable promise within the latest molecular genetic approaches, if linked to the appropriate environmental physiology. We conclude that the interactions between plant and environment require a team approach looking across the disciplines from genes to plants to crops in their particular environments to deliver improved water productivity and contribute to sustainability.


2018 ◽  
Vol 7 (11) ◽  
pp. 414 ◽  
Author(s):  
Megan Blatchford ◽  
Poolad Karimi ◽  
W.G.M. Bastiaanssen ◽  
Hamideh Nouri

Crop water productivity (CWP) has become a recognised indicator in assessing the state of Sustainable Development Goals (SDG) 6.4—to substantially increase water use efficiency. This indicator, while useful at a global scale, is not comprehensive at a local scale. To fill this gap, this research proposes a CWP framework, that takes advantage of the spatio-temporal availability of remote sensing, that identifies CWP goals and sub-indicators specific to the needs of the targeted domain. Three sub-indicators are considered; (i) a global water productivity score (GWPS), (ii) a local water productivity score (LWPS) and (iii) a land and water use productivity score (YWPS). The GWPS places local CWP in the global context and focuses on maximised CWP. The LWPS differentiates yield zones, normalising for potential product, and focuses on minimising water consumption. The YWPS focuses simultaneously on improving land and water productivity equally. The CWP framework was applied to potato in the West Bank, Palestine. Three management practices were compared under each sub-indicator. The case study showed that fields with high and low performance were different under each sub-indicator. The performance associated with different management practices was also different under each sub-indicator. For example, a winter rotation had a higher performance under the YWPS, the fall rotation had a higher performance under the LWPS and under the GWPS there was little difference. The results showed, that depending on the basin goal, not only do the sub-indicators required change, but also the management practices or approach required to reach those basin goals. This highlights the importance of providing a CWP framework with multiple sub-indicators, suitable to basin needs, to ensure that meeting the SDG 6.4 goal does not jeopardise local objectives.


2006 ◽  
Vol 10 (3) ◽  
pp. 443-454 ◽  
Author(s):  
H. Yang ◽  
L. Wang ◽  
K. C. Abbaspour ◽  
A. J. B. Zehnder

Abstract. Amid an increasing water scarcity in many parts of the world, virtual water trade as both a policy instrument and practical means to balance the local, national and global water budget has received much attention in recent years. Building upon the knowledge of virtual water accounting in the literature, this study assesses the efficiency of water use embodied in the international food trade from the perspectives of exporting and importing countries and at the global and country levels. The investigation reveals that the virtual water flows primarily from countries of high crop water productivity to countries of low crop water productivity, generating a global saving in water use. Meanwhile, the total virtual water trade is dominated by green virtual water, which constitutes a low opportunity cost of water use as opposed to blue virtual water. A sensitivity analysis, however, suggests high uncertainties in the virtual water accounting and the estimation of the scale of water saving. The study also raises awareness of the limited effect of water scarcity on the global virtual water trade and the negative implications of the global water saving for the water use efficiency and food security in importing countries and the environment in exporting countries. The analysis shows the complexity in evaluating the efficiency gains in the international virtual water trade. The findings of the study, nevertheless, call for a greater emphasis on rainfed agriculture to improve the global food security and environmental sustainability.


Sign in / Sign up

Export Citation Format

Share Document