scholarly journals Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments

2009 ◽  
Vol 364 (1535) ◽  
pp. 3549-3557 ◽  
Author(s):  
Mel Slater

In this paper, I address the question as to why participants tend to respond realistically to situations and events portrayed within an immersive virtual reality system. The idea is put forward, based on the experience of a large number of experimental studies, that there are two orthogonal components that contribute to this realistic response. The first is ‘being there’, often called ‘presence’, the qualia of having a sensation of being in a real place. We call this place illusion (PI). Second, plausibility illusion (Psi) refers to the illusion that the scenario being depicted is actually occurring. In the case of both PI and Psi the participant knows for sure that they are not ‘there’ and that the events are not occurring. PI is constrained by the sensorimotor contingencies afforded by the virtual reality system. Psi is determined by the extent to which the system can produce events that directly relate to the participant, the overall credibility of the scenario being depicted in comparison with expectations. We argue that when both PI and Psi occur, participants will respond realistically to the virtual reality.

Author(s):  
Florian Hruby ◽  
Irma Castellanos ◽  
Rainer Ressl

Abstract Scale has been a defining criterion of mapmaking for centuries. However, this criterion is fundamentally questioned by highly immersive virtual reality (VR) systems able to represent geographic environments at a high level of detail and, thus, providing the user with a feeling of being present in VR space. In this paper, we will use the concept of scale as a vehicle for discussing some of the main differences between immersive VR and non-immersive geovisualization products. Based on a short review of diverging meanings of scale we will propose possible approaches to the issue of both spatial and temporal scale in immersive VR. Our considerations shall encourage a more detailed treatment of the specific characteristics of immersive geovisualization to facilitate deeper conceptual integration of immersive and non-immersive visualization in the realm of cartography.


2022 ◽  
Vol 2 ◽  
Author(s):  
Christos Kyrlitsias ◽  
Despina Michael-Grigoriou

Immersive virtual reality technologies are used in a wide range of fields such as training, education, health, and research. Many of these applications include virtual humans that are classified into avatars and agents. An overview of the applications and the advantages of immersive virtual reality and virtual humans is presented in this survey, as well as the basic concepts and terminology. To be effective, many virtual reality applications require that the users perceive and react socially to the virtual humans in a realistic manner. Numerous studies show that people can react socially to virtual humans; however, this is not always the case. This survey provides an overview of the main findings regarding the factors affecting the social interaction with virtual humans within immersive virtual environments. Finally, this survey highlights the need for further research that can lead to a better understanding of human–virtual human interaction.


2021 ◽  
Author(s):  
◽  
F. J. Rodal Martínez

Virtual Reality is defined as an interactive and multisensory computer system in which an environment is simulated in real time, and there can be two categories: Immersive Virtual Reality and Non-Immersive Virtual Reality. To date, Virtual Reality has been used in different areas such as education, entertainment and rehabilitation. The WHO estimates that around 15% of the world's population suffers from a disabling condition. This organization in conjunction with the ISPO determined that about 0.5% of the world's population requires an orthotic or prosthetic system. In Mexico, in the National Survey of Demographic Dynamics it is estimated that 10.9% of the population has difficulty walking or moving. The objective of this project is to design a Virtual Reality system that allows training transhumeral amputees in the use of the prosthesis. 2 virtual environments and 8 3D-characters were created so that the subjects to be trained can select between these possibilities to carry out the training sessions. The subjects control these 3D-characters in real time through a motion capture system, which also generates a biomechanical analysis of the movement of the shoulder during the execution of the movements.


1994 ◽  
Vol 3 (2) ◽  
pp. 130-144 ◽  
Author(s):  
Mel Slater ◽  
Martin Usoh ◽  
Anthony Steed

This paper describes a study to assess the influence of a variety of factors on reported level of presence in immersive virtual environments. It introduces the idea of “stacking depth,” that is, where a participant can simulate the process of entering the virtual environment while already in such an environment, which can be repeated to several levels of depth. An experimental study including 24 subjects was carried out. Half of the subjects were transported between environments by using virtual head-mounted displays, and the other half by going through doors. Three other binary factors were whether or not gravity operated, whether or not the subject experienced a virtual precipice, and whether or not the subject was followed around by a virtual actor. Visual, auditory, and kinesthetic representation systems and egocentric/exocentric perceptual positions were assessed by a preexperiment questionnaire. Presence was assessed by the subjects as their sense of “being there,” the extent to which they experienced the virtual environments as more the presenting reality than the real world in which the experiment was taking place, and the extent to which the subject experienced the virtual environments as places visited rather than images seen. A logistic regression analysis revealed that subjective reporting of presence was significantly positively associated with visual and kinesthetic representation systems, and negatively with the auditory system. This was not surprising since the virtual reality system used was primarily visual. The analysis also showed a significant and positive association with stacking level depth for those who were transported between environments by using the virtual HMD, and a negative association for those who were transported through doors. Finally, four of the subjects moved their real left arm to match movement of the left arm of the virtual body displayed by the system. These four scored significantly higher on the kinesthetic representation system than the remainder of the subjects.


Author(s):  
John Sermarini ◽  
Joseph T. Kider ◽  
Joseph J. LaViola ◽  
Daniel S. McConnell

We present the results of a study investigating the influence of task and effector constraints on the kinematics of pointing movements performed in immersive virtual environments. We compared the effect of target width, as a task constraint, to the effect of movement distance, as an effector constraint, in terms of overall effect on movement time in a pointing task. We also compared a linear ray-cast pointing technique to a parabolic pointing technique to understand how interaction style may be understood in the context of task and effector constraints. The effect of target width as an information constraint on pointing performance was amplified in VR. Pointing technique acted as an effector constraint, with linear ray-cast pointing resulting in faster performance than parabolic pointers.


2018 ◽  
pp. 1176-1199
Author(s):  
Diane Gromala ◽  
Xin Tong ◽  
Chris Shaw ◽  
Weina Jin

In the 1990s, when immersive Virtual Reality (VR) was first popular, researchers found it to be an effective intervention in reducing acute pain. Since that time, VR technologies have been used for treating acute pain. Although the exact mechanism is unclear, VR is thought to be an especially effective form of pain distraction. While pain-related virtual environments have built upon pain distraction, a handful of researchers have focused on a more difficult challenge: VR for long-term chronic pain. Because the nature of chronic pain is complex, pharmacological analgesics are often insufficient or unsustainable as an ideal long-term treatment. In this chapter, the authors explore how VR can be used as a non-pharmacological adjuvant for chronic pain. Two paradigms for virtual environments built for addressing chronic pain have emerged – Pain Distraction and what we term Pain Self-modulation. We discuss VR's validation for mitigating pain in patients who have acute pain, for those with chronic pain, and for addressing “breakthrough” periods of higher pain in patients with chronic pain.


2010 ◽  
pp. 180-193 ◽  
Author(s):  
F. Steinicke ◽  
G. Bruder ◽  
J. Jerald ◽  
H. Frenz

In recent years virtual environments (VEs) have become more and more popular and widespread due to the requirements of numerous application areas in particular in the 3D city visualization domain. Virtual reality (VR) systems, which make use of tracking technologies and stereoscopic projections of three-dimensional synthetic worlds, support better exploration of complex datasets. However, due to the limited interaction space usually provided by the range of the tracking sensors, users can explore only a portion of the virtual environment (VE). Redirected walking allows users to walk through large-scale immersive virtual environments (IVEs) such as virtual city models, while physically remaining in a reasonably small workspace by intentionally injecting scene motion into the IVE. With redirected walking users are guided on physical paths that may differ from the paths they perceive in the virtual world. The authors have conducted experiments in order to quantify how much humans can unknowingly be redirected. In this chapter they present the results of this study and the implications for virtual locomotion user interfaces that allow users to view arbitrary real world locations, before the users actually travel there in a natural environment.


Sign in / Sign up

Export Citation Format

Share Document