scholarly journals Observation of correlated X-ray scattering at atomic resolution

2014 ◽  
Vol 369 (1647) ◽  
pp. 20130315 ◽  
Author(s):  
Derek Mendez ◽  
Thomas J. Lane ◽  
Jongmin Sung ◽  
Jonas Sellberg ◽  
Clément Levard ◽  
...  

Tools to study disordered systems with local structural order, such as proteins in solution, remain limited. Such understanding is essential for e.g. rational drug design. Correlated X-ray scattering (CXS) has recently attracted new interest as a way to leverage next-generation light sources to study such disordered matter. The CXS experiment measures angular correlations of the intensity caused by the scattering of X-rays from an ensemble of identical particles, with disordered orientation and position. Averaging over 15 496 snapshot images obtained by exposing a sample of silver nanoparticles in solution to a micro-focused synchrotron radiation beam, we report on experimental efforts to obtain CXS signal from an ensemble in three dimensions. A correlation function was measured at wide angles corresponding to atomic resolution that matches theoretical predictions. These preliminary results suggest that other CXS experiments on disordered ensembles—such as proteins in solution—may be feasible in the future.

1986 ◽  
Vol 79 ◽  
Author(s):  
S. Röber ◽  
R. Gehrke ◽  
H. G. Zachmann

IntroductionThe possibility of using synchrotron radiation as a source of X-rays for scattering experiments has considerably improved the methods of the characterisation of the molecular orientation and molecular order in polymers. In another publication [1], it has been shown that the morphology of ultra highly drawn polyethylene is correlated to the kinetics of isothermal melting, as determined by X- ray scattering employing synchrotron radiation. In this paper we present some results on chain orientation and orientation of crystal lamellae surfaces in uniaxially and biaxially drawn films of polyethyleneterephthalate (PET). These results were obtained by inserting a pole figure goniometer into the synchrotron radiation beam and measuring the wide angle X-ray scattering (WAXS) and small angle X- ray scattering (SAXS) with different angles of incidence of the primary beam onto the sample.


2012 ◽  
Vol 25 (4) ◽  
pp. 9-15 ◽  
Author(s):  
L. Braicovich ◽  
N. B. Brookes ◽  
G. Ghiringhelli ◽  
M. Minola ◽  
G. Monaco ◽  
...  
Keyword(s):  
X Rays ◽  
X Ray ◽  

2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


Author(s):  
V. B. Molodkin ◽  
S. I. Olikhovskii ◽  
S. V. Dmitriev ◽  
V. V. Lizunov

The analytical expressions for coherent and diffuse components of the integrated reflection coefficient are considered in the case of Bragg diffraction geometry for single crystals containing randomly distributed microdefects. These expressions are analyzed numerically for the cases when the instrumental integration of the diffracted X-ray intensity is performed on one, two or three dimensions in the reciprocal-lattice space. The influence of dynamical effects, i.e. primary extinction and anomalously weak and strong absorption, on the integrated intensities of X-ray scattering is investigated in relation to the crystal structure imperfections.


1984 ◽  
Vol 17 (5) ◽  
pp. 337-343 ◽  
Author(s):  
O. Yoda

A high-resolution small-angle X-ray scattering camera has been built, which has the following features. (i) The point collimation optics employed allows the scattering cross section of the sample to be directly measured without corrections for desmearing. (ii) A small-angle resolution better than 0.5 mrad is achieved with a camera length of 1.6 m. (iii) A high photon flux of 0.9 photons μs−1 is obtained on the sample with the rotating-anode X-ray generator operated at 40 kV–30 mA. (iv) Incident X-rays are monochromated by a bent quartz crystal, which makes the determination of the incident X-ray intensity simple and unambiguous. (v) By rotation of the position-sensitive proportional counter around the direct beam, anisotropic scattering patterns can be observed without adjusting the sample. Details of the design and performance are presented with some applications.


2016 ◽  
Vol 23 (4) ◽  
pp. 880-886 ◽  
Author(s):  
Jungho Kim ◽  
Xianbo Shi ◽  
Diego Casa ◽  
Jun Qian ◽  
XianRong Huang ◽  
...  

Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the IrL3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the IrL3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.


1997 ◽  
Vol 30 (1) ◽  
pp. 49-54 ◽  
Author(s):  
J.-M. Dubuisson ◽  
T. Decamps ◽  
P. Vachette

An evacuated, temperature-controlled cell has been built for use on the small-angle X-ray scattering instrument D24 at the synchrotron radiation facility LURE. The sample is placed in a quartz capillary sealed in a stainless-steel holder using a vacuum-tight glue. Several O rings provide a vacuum path upstream and downstream from the cell, so that the X-ray beam only meets the capillary walls and the solution under study between the slits and the beam stop, while the sample is maintained under atmospheric pressure. The cell temperature is controlled via a water circulation through a copper sheath in tight contact with the steel holder. The use of this cell results in a marked reduction of the background, as observed in two series of parallel experiments using a conventional cell and this evacuated cell. The decrease ranges from a factor of 2 at s 1 values larger than 0.008 Å−1 to more than 15 at s = 0.00116 Å−1, where s is the modulus of the scattering vector (s = 2sin θ/λ, 2θ is the scattering angle and λ is the wavelength of the X-rays).


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
R. P. Kurta ◽  
M. Altarelli ◽  
I. A. Vartanyants

Angular X-ray cross-correlation analysis (XCCA) is an approach to study the structure of disordered systems using the results of X-ray scattering experiments. In this paper we summarize recent theoretical developments related to the Fourier analysis of the cross-correlation functions. Results of our simulations demonstrate the application of XCCA to two- and three-dimensional (2D and 3D) disordered ensembles of particles. We show that the structure of a single particle can be recovered using X-ray data collected from a 2D disordered system of identical particles. We also demonstrate that valuable structural information about the local structure of 3D systems, inaccessible from a standard small-angle X-ray scattering experiment, can be resolved using XCCA.


1995 ◽  
Vol 382 ◽  
Author(s):  
H.M. Fischer ◽  
H.E. Fischer ◽  
M. Bessiere ◽  
J.-F. Bobo ◽  
O. Lenoble ◽  
...  

ABSTRACTDiffuse scattering of X rays is a particularly useful tool for studying interface and surface defects in single layer films. We have extended this technique to the study of multilayers. The samples are Mn/Ir(111) superlattices where Mn is pseudomorphic to Ir. We have studied three typical samples prepared at different substrate temperatures. Using theoretical analyses and simulations of both specular and off-specular X-ray scattering data at small angles as well as large angles, we show that large length-scale interfacial roughness is mainly due to the formation of terraces during growth at low deposition temperature, whereas small length-scale interfacial roughness occurs preferably at high deposition temperature and is mainly due to an atomic interdiffusion (i.e. the formation of an interface alloy) which manages to maintain a high degree of crystallographic order.


Sign in / Sign up

Export Citation Format

Share Document