scholarly journals Mapping the route from naive pluripotency to lineage specification

2014 ◽  
Vol 369 (1657) ◽  
pp. 20130540 ◽  
Author(s):  
Tüzer Kalkan ◽  
Austin Smith

In the mouse blastocyst, epiblast cells are newly formed shortly before implantation. They possess a unique developmental plasticity, termed naive pluripotency. For development to proceed, this naive state must be subsumed by multi-lineage differentiation within 72 h following implantation. In vitro differentiation of naive embryonic stem cells (ESCs) cultured in controlled conditions provides a tractable system to dissect and understand the process of exit from naive pluripotency and entry into lineage specification. Exploitation of this system in recent large-scale RNAi and mutagenesis screens has uncovered multiple new factors and modules that drive or facilitate progression out of the naive state. Notably, these studies show that the transcription factor network that governs the naive state is rapidly dismantled prior to upregulation of lineage specification markers, creating an intermediate state that we term formative pluripotency. Here, we summarize these findings and propose a road map for state transitions in ESC differentiation that reflects the orderly dynamics of epiblast progression in the embryo.

2020 ◽  
Author(s):  
Nathalia Azevedo ◽  
Elisa Bertesago ◽  
Ismail Ismailoglu ◽  
Michael Kyba ◽  
Michihiro Kobayashi ◽  
...  

AbstractThe in vitro generation from pluripotent stem cells (PSCs) of different blood cell types, in particular those that are not replenished by hematopoietic stem cells (HSCs) like fetal-derived tissue-resident macrophages and innate-like lymphocytes, is of a particular interest. In order to succeed in this endeavor, a thorough understanding of the pathway interplay promoting lineage specification for the different blood cell types is needed. Notch signaling is essential for the HSC generation and their derivatives, but its requirement for tissue-resident immune cells is unknown. Using mouse embryonic stem cells (mESCs) to recapitulate murine embryonic development, we have studied the requirement for Notch signaling during the earliest B-lymphopoiesis and found that Rbpj-deficient mESCs are able to generate B-1 cells. Their Notch-independence was confirmed in ex vivo experiments using Rbpj-deficient embryos. In addition, we found that upregulation of Notch signaling was needed for the emergence of B-2 lymphoid cells. Taken together, these findings indicate that control of Notch signaling dosage is critical for the different B-cell lineage specification and provides pivotal information for their in vitro generation from PSCs for therapeutic applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Sushrut Dakhore ◽  
Bhavana Nayer ◽  
Kouichi Hasegawa

Over the past two decades, human embryonic stem cells (hESCs) have gained attention due to their pluripotent and proliferative ability which enables production of almost all cell types in the human body in vitro and makes them an excellent tool to study human embryogenesis and disease, as well as for drug discovery and cell transplantation therapies. Discovery of human-induced pluripotent stem cells (hiPSCs) further expanded therapeutic applications of human pluripotent stem cells (PSCs). hPSCs provide a stable and unlimited original cell source for producing suitable cells and tissues for downstream applications. Therefore, engineering the environment in which these cells are grown, for stable and quality-controlled hPSC maintenance and production, is one of the key factors governing the success of these applications. hPSCs are maintained in a particular niche using specific cell culture components. Ideally, the culture should be free of xenobiotic components to render hPSCs suitable for therapeutic applications. Substantial efforts have been put to identify effective components, and develop culture conditions and protocols, for their large-scale expansion without compromising on quality. In this review, we discuss different media, their components and functions, including specific requirements to maintain the pluripotent and proliferative ability of hPSCs. Understanding the role of culture components would enable the development of appropriate conditions to promote large-scale, quality-controlled expansion of hPSCs thereby increasing their potential applications.


Author(s):  
Nicholas D Allen

The anticipated therapeutic uses of neural stem cells depend on their ability to retain a certain level of developmental plasticity. In particular, cells must respond to developmental manipulations designed to specify precise neural fates. Studies in vivo and in vitro have shown that the developmental potential of neural progenitor cells changes and becomes progressively restricted with time. For in vitro cultured neural progenitors, it is those derived from embryonic stem cells that exhibit the greatest developmental potential. It is clear that both extrinsic and intrinsic mechanisms determine the developmental potential of neural progenitors and that epigenetic, or chromatin structural, changes regulate and coordinate hierarchical changes in fate-determining gene expression. Here, we review the temporal changes in developmental plasticity of neural progenitor cells and discuss the epigenetic mechanisms that underpin these changes. We propose that understanding the processes of epigenetic programming within the neural lineage is likely to lead to the development of more rationale strategies for cell reprogramming that may be used to expand the developmental potential of otherwise restricted progenitor populations.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Guillaume Pourcher ◽  
Christelle Mazurier ◽  
Yé Yong King ◽  
Marie-Catherine Giarratana ◽  
Ladan Kobari ◽  
...  

We previously described the large-scale production of RBCs from hematopoietic stem cells (HSCs) of diverse sources. Our present efforts are focused to produce RBCs thanks to an unlimited source of stem cells. Human embryonic stem (ES) cells or induced pluripotent stem cell (iPS) are the natural candidates. Even if the proof of RBCs production from these sources has been done, their amplification ability is to date not sufficient for a transfusion application. In this work, our protocol of RBC production was applied to HSC isolated from fetal liver (FL) as an intermediate source between embryonic and adult stem cells. We studied the erythroid potential of FL-derived CD34+cells. In thisin vitromodel, maturation that is enucleation reaches a lower level compared to adult sources as observed for embryonic or iP, but, interestingly, they (i) displayed a dramaticin vitroexpansion (100-fold more when compared to CB CD34+) and (ii) 100% cloning efficiency in hematopoietic progenitor assays after 3 days of erythroid induction, as compared to 10–15% cloning efficiency for adult CD34+cells. This work supports the idea that FL remains a model of study and is not a candidate forex vivoRBCS production for blood transfusion as a direct source of stem cells but could be helpful to understand and enhance proliferation abilities for primitive cells such as ES cells or iPS.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3558
Author(s):  
Chih-Yu Yeh ◽  
Wei-Han Huang ◽  
Hung-Chi Chen ◽  
Yaa-Jyuhn James Meir

During the development of a multicellular organism, the specification of different cell lineages originates in a small group of pluripotent cells, the epiblasts, formed in the preimplantation embryo. The pluripotent epiblast is protected from premature differentiation until exposure to inductive cues in strictly controlled spatially and temporally organized patterns guiding fetus formation. Epiblasts cultured in vitro are embryonic stem cells (ESCs), which recapitulate the self-renewal and lineage specification properties of their endogenous counterparts. The characteristics of totipotency, although less understood than pluripotency, are becoming clearer. Recent studies have shown that a minor ESC subpopulation exhibits expanded developmental potential beyond pluripotency, displaying a characteristic reminiscent of two-cell embryo blastomeres (2CLCs). In addition, reprogramming both mouse and human ESCs in defined media can produce expanded/extended pluripotent stem cells (EPSCs) similar to but different from 2CLCs. Further, the molecular roadmaps driving the transition of various potency states have been clarified. These recent key findings will allow us to understand eutherian mammalian development by comparing the underlying differences between potency network components during development. Using the mouse as a paradigm and recent progress in human PSCs, we review the epiblast’s identity acquisition during embryogenesis and their ESC counterparts regarding their pluripotent fates and beyond.


Development ◽  
2021 ◽  
Author(s):  
Nathalia Azevedo Portilho ◽  
Rebecca Scarfò ◽  
Elisa Bertesago ◽  
Ismail Ismailoglu ◽  
Michael Kyba ◽  
...  

B-1 lymphocytes are a small but unique component of the innate immune-like cells. However, their ontogenic origin is still a matter of debate. While it is widely accepted that B-1 cells originate early in fetal life, whether or not they arise from hematopoietic stem cells (HSCs) is still unclear. In order to shed light on the B-1 cell origin, we set out to determine whether their lineage specification is dependent on Notch signaling, which is essential for the HSC generation and therefore, all derivatives lineages. Using mouse embryonic stem cells (mESCs) to recapitulate murine embryonic development, we have studied the requirement for Notch signaling during the earliest B-lymphopoiesis and found that Rbpj-deficient mESCs are able to generate B-1 cells. Their Notch-independence was confirmed in ex vivo experiments using Rbpj-deficient embryos. In addition, we found that upregulation of Notch signaling induced the emergence of B-2 lymphoid cells. Taken together, these findings indicate that control of Notch signaling dosage is critical for different B-cell lineages specification from endothelial cells and provides pivotal information for their in vitro generation from PSCs for therapeutic applications.


2013 ◽  
Vol 305 (3) ◽  
pp. E325-E335 ◽  
Author(s):  
Jixiu Shan ◽  
Takashi Hamazaki ◽  
Tiffany A. Tang ◽  
Naohiro Terada ◽  
Michael S. Kilberg

In somatic cells, a collection of signaling pathways activated by amino acid limitation have been identified and referred to as the amino acid response (AAR). Despite the importance of possible detrimental effects of nutrient limitation during in vitro culture, the AAR has not been investigated in embryonic stem cells (ESC). AAR activation caused the expected increase in transcription factors that mediate specific AAR pathways, as well as the induction of asparagine synthetase, a terminal AAR target gene. Neither AAR activation nor stable knockdown of activating transcription factor (Atf) 4, a transcriptional mediator of the AAR, adversely affected ESC self-renewal or pluripotency. Low-level induction of the AAR over a 12-day period of embryoid body differentiation did alter lineage specification such that the primitive endodermal, visceral endodermal, and endodermal lineages were favored, whereas mesodermal and certain ectodermal lineages were suppressed. Knockdown of Atf4 further enhanced the AAR-induced increase in endodermal formation, suggesting that this phenomenon is mediated by an Atf4-independent mechanism. Collectively, the results indicate that, during differentiation of mouse embryoid bodies in culture, the availability of nutrients, such as amino acids, can influence the formation of specific cell lineages.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-39-SCI-39
Author(s):  
Luc Douay

Abstract Abstract SCI-39 The generation of red blood cells (RBCs) in vitro using biotechnologies could represent an interesting alternative to classical transfusion products, in that it would combine adequate supplies with the specific production of blood products of a particular phenotype and the reduction of infection risks. This presentation will review how it is now possible to obtain in vitro complete maturation of the erythroid line to the stage of enucleation, starting from hematopoietic stem cells (HSCs) from peripheral blood, bone marrow or umbilical cord blood, or embryonic stem cells or adult pluripotent stem cells (induced pluripotent stem cells, iPSCs). This presentation will discuss how the functionality of cultured human RBCs (cRBCs) is settled in terms of deformability, hemoglobin maturation, oxygen carrying capacity, enzyme content, and terminal maturation from the reticulocyte stage to mature RBC after infusion into the NOD/SCID mouse model. The clinical feasibility of this concept has recently been demonstrated by reporting that cRBCs generated in vitro from peripheral HSCs under GMP conditions encounter in vivo the conditions required for their maturation and that they persist in the circulation for several weeks in humans. These data have established the proof of principle for transfusion of in vitro-generated RBCs and the pathway toward new developments in transfusion medicine. The most proliferative source of stem cells for generating cRBCs is cord blood, but it is limited in terms of HSCs and is dependent on donations. Pluripotent stem cell technology represents a potentially unlimited source of RBCs and opens the door to the development of a new generation of allogeneic transfusion products. Because iPSCs can be selected for a phenotype of interest, they are obviously the best candidate for organizing complementary sources of RBCs for transfusion. It is established that only three human iPSC clones would have been sufficient to match more than 99 percent of the patients in need of RBC transfusions. As a whole, a very limited number of RBC clones would provide for the needs of most alloimmunized patients and those with a rare blood group. Generating cRBCs from iPSCs has been done but needs to be optimized to lead to a clinical application in blood transfusion. Several crucial points remain to be resolved, notably, the choice of the initial cell type, the method of reprogramming (i.e., to ensure the safety of the iPSCs and to ensure their clinical grade), the optimization of the erythrocyte differentiation, and the definition of GMP conditions for industrial production. Assuming that in vitro large-scale cultured RBC production efficiently operates in the near future, this presentation will highlight the potential applications for alloimmunized patients and those with a rare blood group. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document