scholarly journals Counting animal species with DNA barcodes: Canadian insects

2016 ◽  
Vol 371 (1702) ◽  
pp. 20150333 ◽  
Author(s):  
Paul D. N. Hebert ◽  
Sujeevan Ratnasingham ◽  
Evgeny V. Zakharov ◽  
Angela C. Telfer ◽  
Valerie Levesque-Beaudin ◽  
...  

Recent estimates suggest that the global insect fauna includes fewer than six million species, but this projection is very uncertain because taxonomic work has been limited on some highly diverse groups. Validation of current estimates minimally requires the investigation of all lineages that are diverse enough to have a substantial impact on the final species count. This study represents a first step in this direction; it employs DNA barcoding to evaluate patterns of species richness in 27 orders of Canadian insects. The analysis of over one million specimens revealed species counts congruent with earlier results for most orders. However, Diptera and Hymenoptera were unexpectedly diverse, representing two-thirds of the 46 937 barcode index numbers (=species) detected. Correspondence checks between known species and barcoded taxa showed that sampling was incomplete, a result confirmed by extrapolations from the barcode results which suggest the occurrence of at least 94 000 species of insects in Canada, a near doubling from the prior estimate of 54 000 species. One dipteran family, the Cecidomyiidae, was extraordinarily diverse with an estimated 16 000 species, a 10-fold increase from its predicted diversity. If Canada possesses about 1% of the global fauna, as it does for known taxa, the results of this study suggest the presence of 10 million insect species with about 1.8 million of these taxa in the Cecidomyiidae. If so, the global species count for this fly family may exceed the combined total for all 142 beetle families. If extended to more geographical regions and to all hyperdiverse groups, DNA barcoding can rapidly resolve the current uncertainty surrounding a species count for the animal kingdom. A newly detailed understanding of species diversity may illuminate processes important in speciation, as suggested by the discovery that the most diverse insect lineages in Canada employ an unusual mode of reproduction, haplodiploidy. This article is part of the themed issue ‘From DNA barcodes to biomes’.

ZooKeys ◽  
2019 ◽  
Vol 819 ◽  
pp. 9-40 ◽  
Author(s):  
David W. Langor

Based on data presented in 29 papers published in theBiota of CanadaSpecial Issue of ZooKeys and data provided herein about Zygentoma, more than 44,100 described species of terrestrial arthropods (Arachnida, Myriapoda, Insecta, Entognatha) are now known from Canada. This represents more than a 34% increase in the number of described species reported 40 years ago (Danks 1979a). The most speciose groups are Diptera (9620 spp.), Hymenoptera (8757), and Coleoptera (8302). Less than 5% of the fauna has a natural Holarctic distribution and an additional 5.1% are non-native species. A conservatively estimated 27,000–42,600 additional species are expected to be eventually discovered in Canada, meaning that the total national species richness is ca. 71,100–86,700 and that currently 51–62% of the fauna is known. Of the most diverse groups, those that are least known, in terms of percent of the Canadian fauna that is documented, are Acari (31%), Thysanoptera (37%), Hymenoptera (46%), and Diptera (32–65%). All groups but Pauropoda have DNA barcodes based on Canadian material. More than 75,600 Barcode Index Numbers have been assigned to Canadian terrestrial arthropods, 63.5% of which are Diptera and Hymenoptera. Much work remains before the Canadian fauna is fully documented, and this will require decades to achieve. In particular, greater and more strategic investment in surveys and taxonomy (including DNA barcoding) is needed to adequately document the fauna.


2019 ◽  
Vol 190 (4) ◽  
pp. 374-388 ◽  
Author(s):  
Jeffery K Stallman ◽  
Vicki A Funk ◽  
Jonathan P Price ◽  
Matthew L Knope

AbstractDNA barcoding has been largely successful in differentiating animal species, but the most effective loci and evaluative methods for plants are still debated. Floras of young, oceanic islands are a challenging test of DNA barcodes, because of rapid speciation, high incidence of hybridization and polyploidy. We used character-based, tree-based and genetic distance-based methods to test DNA barcoding of 385 species of native Hawaiian plants constituting 20 lineages at the nuclear ITS(2) locus, nine lineages at each of the plastid loci trnH-psbA and rbcL, eight lineages at the plastid locus matK and four lineages with concatenated data. We also incorporated geographical range information and tested if varying sample sizes within a lineage influenced identification success. Average discrimination success was low (22% maximum) with all methods of analysis across all loci. The character-based method generally provided the highest identification success, there were limited benefits from incorporating geographical data and no relationship between number of species sampled in a lineage and identification success was found. Percentages of identification success are the lowest reported in a DNA barcoding study of comparable scale, and multi-species groups that radiated in the Hawaiian archipelago probably cannot be identified based on current DNA barcoding loci and methodologies.


Insects ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 82
Author(s):  
Caroline Chimeno ◽  
Axel Hausmann ◽  
Stefan Schmidt ◽  
Michael J. Raupach ◽  
Dieter Doczkal ◽  
...  

Determining the size of the German insect fauna requires better knowledge of several megadiverse families of Diptera and Hymenoptera that are taxonomically challenging. This study takes the first step in assessing these “dark taxa” families and provides species estimates for four challenging groups of Diptera (Cecidomyiidae, Chironomidae, Phoridae, and Sciaridae). These estimates are based on more than 48,000 DNA barcodes (COI) from Diptera collected by Malaise traps that were deployed in southern Germany. We assessed the fraction of German species belonging to 11 fly families with well-studied taxonomy in these samples. The resultant ratios were then used to estimate the species richness of the four “dark taxa” families (DT families hereafter). Our results suggest a surprisingly high proportion of undetected biodiversity in a supposedly well-investigated country: at least 1800–2200 species await discovery in Germany in these four families. As this estimate is based on collections from one region of Germany, the species count will likely increase with expanded geographic sampling.


Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 851-854 ◽  
Author(s):  
Mehrdad Hajibabaei ◽  
Gregory AC Singer ◽  
Donal A Hickey

DNA barcoding has been recently promoted as a method for both assigning specimens to known species and for discovering new and cryptic species. Here we test both the potential and the limitations of DNA barcodes by analysing a group of well-studied organisms—the primates. Our results show that DNA barcodes provide enough information to efficiently identify and delineate primate species, but that they cannot reliably uncover many of the deeper phylogenetic relationships. Our conclusion is that these short DNA sequences do not contain enough information to build reliable molecular phylogenies or define new species, but that they can provide efficient sequence tags for assigning unknown specimens to known species. As such, DNA barcoding provides enormous potential for use in global biodiversity studies.Key words: DNA barcoding, species identification, primate, biodiversity.


2019 ◽  
Author(s):  
Abdullah A. Toor ◽  
Amir A. Toor

SummaryBackgroundThe large-scale pattern of distribution of genes on the chromosomes in the known animal genomes is not well characterized. We hypothesized that individual genes will be distributed on chromosomes in a mathematically ordered manner across the animal kingdom.ResultsTwenty-one animal genomes reported in the NCBI database were examined. Numerically, there was a trend towards increasing overall gene content with increasing size of the genome as reflected by the chromosomal complement. Gene frequency on individual chromosomes in each animal genome was analyzed and demonstrated uniformity of proportions within each animal with respect to both average gene frequency on individual chromosomes and gene distribution across the unique genomes. Further, average gene distribution across animal species followed a relationship whereby it was, approximately, inversely proportional to the square root of the number of chromosomes in the unique animal genomes, consistent with the notion that there is an ordered increase in gene dispersion as the complexity of the genome increased. To further corroborate these findings a derived measure, termed gene spacing on chromosomes correlated with gene frequency and gene distribution.ConclusionAs animal species have evolved, the distribution of their genes on individual chromosomes and within their genomes, when viewed on a large scale is not random, but follows a mathematically ordered process, such that as the complexity of the organism increases, the genes become less densely distributed on the chromosomes and more dispersed across the genome.


2011 ◽  
Vol 63 (4) ◽  
pp. 1225-1234 ◽  
Author(s):  
Reyhaneh Darsouei ◽  
Javad Karimi ◽  
Mehdi Modarres-Awal

DNA barcoding is a modern method for the identification of different species, including insects. Among animals, the major emphasis of DNA barcoding is on insects. Due to this global trend we addressed this approach for surveying a group of insects. The parasitic wasps (including primary and hyperparasitoids) of pome fruit orchard aphids were collected from Iran-Mashhad during 2009-2010. Preliminary identification of this group was performed by using morphological and morphometric characters and SEM. The COI gene in the specimens was amplified and sequenced. In this survey, Aphidius matricariae, Binodoxys angelicae, Diaeretiella rapae, Ephedrus persicae, Lysiphlebus fabarum and Praon volucre parasitoids and Alloxysta sp., Asaphes suspensus, Dendrocerus carpenteri, Pachyneuron aphidis, Syrphophagus aphidivorus hyperparasitoids were studied. Based on intra-interspecies distances and phylogenetic analysis using NJ, all species possess diagnostic barcode sequences. The results of this study show that the COI sequence could be useful in identification study of this group of insects. Here we have provided the first GenBank data for the COI gene of the above-mentioned hyperparasitoids as well as an initial attempt toward preparing DNA barcodes for Iranian parasitoid and hyperparasitoid aphids.


2018 ◽  
Author(s):  
Kam-Cheng Yeong ◽  
Haruo Takizawa ◽  
Thor-Seng Liew

Sabah, northern Borneo is one of the world’s most well-recognized biodiversity hotspots famous for the incredible diversity of its flora and fauna. Plenty of studies of leaf beetle fauna from this region have been conducted over the past 30 years. Yet, our knowledge of the leaf beetle fauna from island habitats remains scarce despite Sabah having the highest number of islands in Malaysia (ca. 500 islands). In this study, we collected leaf beetle fauna from 13 islands off the west coast of Sabah between January 2016 and March 2017. All specimens were identified to species level. Species names were assigned when the specimens fitted the description of species in the literature and morpho-species were assigned when the species names could not be determined. In addition, DNA barcodes – mitochondarial COI gene – of the species were sequenced. A total of 68 species from 31 genera and 5 subfamilies were collected with 12 species name being determined. From the data it was established that Pulau Gaya has the highest species richness (42 species), followed by Pulau Tiga (22 species) and Pulau Sapangar (18 species). Furthermore, a total of 64 Barcode Index Numbers consisting of 101 DNA barcodes were obtained from 60 leaf beetle species. The mean intraspecific and interspecific distances were determined as 0.77 % and 16.11 %, respectively. In addition, DNA barcoding also reveals phenotypic variation in leaf beetle species, particularly in the case of the subfamily Galerucinae. This study provides baseline knowledge and information about the DNA barcodes of leaf beetle species on Sabah’s island habitats for use in future studies.


Author(s):  
Dudu Özkum Yavuz ◽  
Mustapha Bulama- Modu

Aims: To review the phytomedicinal researches on endemic plants of Northern Cyprus and to assess the plants of their DNA barcoding status. Study Design: A review. Methodology: This work reviewed available and accessible original articles in EBSCO, Ovid MEDLINE®, PubMed®, ScienceDirectTM, Scopus® and Web of ScienceTM databases on phytomedicinal investigations and BOLD System, MMDBD version 1.5 and GenBank® on DNA barcodes of the endemic plants of Northern Cyprus until May, 2020. Using keywords searches related to phytochemistry, biological activity and DNA barcoding, DNA Sequences and the data obtain evaluated and the information that does not meet the inclusion criteria were excluded. We believe that this information would tentatively help researchers to ethically explore these plants for their Medicinal and Aromatic potentials. Results: Only 6 of the 20 endemic plants of Northern Cyprus were phytopharmaceutically investigated, while DNA sequences of 5 were found to be deposited in the publicly accessible databases accounting for 30% and 25% of the total plants respectively. Conclusion: Endemism is related to uniqueness in features including the phytomedicinal features, thus Northern Cyprus endemic plants hold ample of such. However the results of this review showed that only few were harnessed for their medicinal properties and hence the need for their pharmacological properties and comprehensive barcoding for proper authentication, detection of adulteration, and quality control.


Zootaxa ◽  
2019 ◽  
Vol 4585 (3) ◽  
pp. 547
Author(s):  
VALENTINA A. TESLENKO ◽  
DMITRY M. PALATOV ◽  
ALEXANDER A. SEMENCHENKO

Leuctra adjariae sp. n. and Leuctra georgiae sp. n. (Plecoptera: Leuctridae) are described as two new apterous stonefly species from the Meskheti Range (Lesser Caucasus) in southwestern Georgia. Descriptions and illustrations are provided for both sexes and diagnostic characters are discussed. Males and females of the two species are associated by DNA barcodes. Comparisons with corresponding regions of COI between L. adjariae sp. n. and L. georgiae sp. n. produced K2P genetic distances of 8.38%, values well associated with interspecific variation. The well-supported monophyly as well as results of an ABGD analysis confirms the validity of both new species. Capnioneura gouanerae Vinçon & Sivec, 2011, previously described and known only from Turkey, is reported for the first time for the Caucasus. 


Sign in / Sign up

Export Citation Format

Share Document