scholarly journals Dry and hot: the hydraulic consequences of a climate change–type drought for Amazonian trees

2018 ◽  
Vol 373 (1760) ◽  
pp. 20180209 ◽  
Author(s):  
Clarissa G. Fontes ◽  
Todd E. Dawson ◽  
Kolby Jardine ◽  
Nate McDowell ◽  
Bruno O. Gimenez ◽  
...  

How plants respond physiologically to leaf warming and low water availability may determine how they will perform under future climate change. In 2015–2016, an unprecedented drought occurred across Amazonia with record-breaking high temperatures and low soil moisture, offering a unique opportunity to evaluate the performances of Amazonian trees to a severe climatic event. We quantified the responses of leaf water potential, sap velocity, whole-tree hydraulic conductance ( K wt ), turgor loss and xylem embolism, during and after the 2015–2016 El Niño for five canopy-tree species. Leaf/xylem safety margins (SMs), sap velocity and K wt showed a sharp drop during warm periods. SMs were negatively correlated with vapour pressure deficit, but had no significant relationship with soil water storage. Based on our calculations of canopy stomatal and xylem resistances, the decrease in sap velocity and K wt was due to a combination of xylem cavitation and stomatal closure. Our results suggest that warm droughts greatly amplify the degree of trees' physiological stress and can lead to mortality. Given the extreme nature of the 2015–2016 El Niño and that temperatures are predicted to increase, this work can serve as a case study of the possible impact climate warming can have on tropical trees. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.

2016 ◽  
Vol 66 (3) ◽  
pp. 314
Author(s):  
Ben Hague ◽  
Karl Braganza ◽  
David Jones

Many agricultural studies have identified that wheat yield is sensitive to seasonal rainfall and extreme high temperatures. We investigate the impact of extreme heat events, in particular on wheat yields in South-East Australia (SEA) and South-West Western Australia (SWWA).We define a 'heat-day' as a day where the daily maximum temperature exceeds the 1911–2013 90th percentile for the respective calendar month. We find that the number of heat-days has experienced statistically significant increases across most months across much of Australia, particularly in South Australia, Western Australia, the Northern Territory and Tasmania. The trends are especially marked in winter, including in key wheat-growing regions. The temperatures recorded on these hottest days have also shown a statistically significant increase over the last 100 years.We find that, while wheat yields are more strongly correlated with rainfall than with the number of heat-days, there is substantial evidence to suggest that during drought conditions wheat yields are sensitive to the number of heat-days recorded in August and September in SEA and September and October in SWWA. Extreme heat and rainfall have a stronger association with below-average yields than above-average yields.Extreme temperatures and rainfall in these regions are related to major Australian climate drivers which form the basis of seasonal prediction models and are important for natural variability and long-term climate change. Here we assess the degree to which wheat yields in both regions can be related to the El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Southern Annular Mode (SAM). We find that positive IOD events and El Niño events are both associated with reductions in wheat yields in SEA, but that the co-incidence of these events have no additional wheat yield reductions than would be expected if either a positive IOD or El Niño event occurs. The average annual wheat yield loss associated with El Niño state and/or positive IOD state in SEA is estimated to around sixteen to twenty one per cent.This paper provides insights into the historical relationships between wheat yields, extreme heat and climatic modes of variability in Australia, and discusses the possibilities for changes in wheat yields under a future climate change scenario.


2021 ◽  
Vol 9 (4) ◽  
pp. 377
Author(s):  
Dong Eun Lee ◽  
Jaehee Kim ◽  
Yujin Heo ◽  
Hyunjin Kang ◽  
Eun Young Lee

The impact of climatic variability in atmospheric conditions on coastal environments accompanies adjustments in both the frequency and intensity of coastal storm surge events. The top winter season daily maximum sea level height events at 20 tidal stations around South Korea were examined to assess such impact of winter extratropical cyclone variability. As the investigation focusses on the most extreme sea level events, the impact of climate change is found to be invisible. It is revealed that the measures of extreme sea level events—frequency and intensity—do not correlate with the local sea surface temperature anomalies. Meanwhile, the frequency of winter extreme events exhibits a clear association with the concurrent climatic indices. It was determined that the annual frequency of the all-time top 5% winter daily maximum sea level events significantly and positively correlates with the NINO3.4 and Pacific Decadal Oscillation (PDO) indices at the majority of the 20 tidal stations. Hence, this indicates an increase in extreme event frequency and intensity, despite localized temperature cooling. This contradicts the expectation of increases in local extreme sea level events due to thermal expansion and global climate change. During El Nino, it is suggested that northward shifts of winter storm tracks associated with El Nino occur, disturbing the sea level around Korea more often. The current dominance of interannual storm track shifts, due to climate variability, over the impact of slow rise on the winter extreme sea level events, implies that coastal extreme sea level events will change through changes in the mechanical drivers rather than thermal expansion. The major storm tracks are predicted to continue shifting northward. The winter extreme sea level events in the midlatitude coastal region might not go through a monotonic change. They are expected to occur more often and more intensively in the near future, but might not continue doing so when northward shifting storm tracks move away from the marginal seas around Korea, as is predicted by the end of the century.


2017 ◽  
Vol 14 (18) ◽  
pp. 4355-4374 ◽  
Author(s):  
Istem Fer ◽  
Britta Tietjen ◽  
Florian Jeltsch ◽  
Christian Wolff

Abstract. The El Niño–Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature–eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.


2017 ◽  
Vol 19 (2) ◽  
Author(s):  
Salwa Lubnan Dalimoenthe ◽  
Y Apriana ◽  
T June

<p><em>Climate change has been influencing rainfall pattern so that it would be necessary to see the impact of that changed on tea plantation. The experimental area coverage lowland (600 m asl), midland (800-1000m asl) and highland (&gt;1.000 m asl) tea plantation and each altituted represented by three tea estate in West Java. The rainfall data collected since 2005 up to 2014 from each estate and water deficit has been count through the method develop by Wijaya (1996). The results showed that the rainfall pattern has been changed by La-Nina and El-Nino during 2005-2014 in tea estate either in lowland, midland or highland in the last decade. The climate change caused  rainfall decreasing and increasing on dry month (the rainfall &lt; 100 mm). Eventhough on 2009 there is an significantly increasing of the rainfall but after 2009 until 2014, the rainfall tend to decrease. After El-Nino on late 2009 and early 2010, lowland tea estate on Subang Regency facing water deficit until 5 months with R (defisit water index) far below 1 even there is no El Nino. The tea plantation at midland area (Cianjur Regency) facing 5 months water deficit per year, but the R index close to 1. While in highland tea plantation (Bandung Regency), the water deficit only happend on certain month on certain year although there is a month with zero rainfall. Water deficit could be happend because of runoff on soil surface stimulate by low ability of soil to keep the water.</em></p>


2018 ◽  
Author(s):  
Jose R Marin Jarrin ◽  
Pelayo Salinas-de-León

El Niño events heavily influence physical characteristics in the Tropical Eastern Pacific and lead to a decrease in nutrient and phytoplankton concentrations and to variation in the composition of the marine trophic chain. However, El Niño events can also provide an opportunity to evaluate the possible effects climate change may have on marine ecosystems. The Galapagos Marine Reserve coastal fin-fish fishery supports approximately 400 fishers that target species that include benthic/demersal predatory fish such as the endemic Galapagos whitespotted sandbass (Paralabrax albomaculatus), the regional endemic sailfin grouper (Mycteroperca olfax) and mottled scorpion fish (Pontinus clemensi), and the misty grouper (Hyporthodon mystacinus). The first two species are listed as vulnerable and endangered, respectively, on the IUCN red list of threatened species. Despite their potential effects on the biota, at present it is unclear how El Niño events influence artisanal fin-fish fisheries in the Galapagos. To study the impacts of El Niño events on the fishery, numerical percentage catch composition at the largest dock in Santa Cruz Island was recorded during March and April 2013, 2014 and 2016 and compared. Compositions were significantly different between 2016 and both 2013 and 2014, but not between 2013 and 2014. These differences appear to have been due to the appearance of uncommon demersal/benthic predatory fish such as Grape eye seabass (Hemilutjanus macrophthalmos) and Pacific dog snapper (Lutjanus novemfasciatus). Size frequency distributions also varied, with significantly larger sizes of several species observed in 2016 when compared to 2013 or 2014. These changes in catch composition and size may be a product of a reduction in nutrient concentration and primary production that led to an increase in water clarity and decrease in prey biomass that forced these benthic fish species to change their feeding behavior and strike at baits that usually would not be easily detected. Because of the conservative life history many of these benthic predatory fish exhibit and the absence of any form of management for fish species in the GMR, El Niño events may have profound effects on their populations due to the elimination of the largest individuals. Management actions, such as size and catch limits and closures, directed at reducing the impact of the fishery on these important fish populations in the near- (El Niños) and long-term (climate change) future should be encouraged.


2017 ◽  
Vol 36 (2) ◽  
pp. 77 ◽  
Author(s):  
M. Syakir ◽  
E. Surmaini

<p>Coffee is one of the Indonesian largest export commodities and has a strategic role in the economy of nearly two million farmers’ livelihood. The potency of Indonesia’s coffee export is quite high because of its preferred taste, however the trend of national coffee production is only 1-2% per year. On the other hand, the impacts of climate change also threaten the achievement of increased production targets. This paper reviews the impact climate change on coffee production and the adaptation strategies. The main coffee producing regions in Indonesia are Aceh, North Sumatera, South Sumatera, Lampung, Bengkulu, East Java and South Sulawesi Provinces. Most of these regions are vulnerable to climate change. The increasing of extreme climate events such as drought due to El Niño causes a decline in national coffee production to 10%. On the contrary, the longer wet season due to La Niña caused the decreased coffee production to 80%. Indirect impacts due to rising temperatures are increased incidence of coffee borer and leaf rust disease which can lead to a 50% decline on coffee production. Due to rising temperatures, the projected coffee production areas are projected to shift to higher elevations. Numerous adaptive technologies have been intoduced, however adaptive capacaity of farmers are still low. This condition is exacerbated by the limited access of most farmers to climate information, markets, technology, farming credits, and climate risk management information. To overcome the problem, policy makers, stakeholders and farmers have to accelerate the adaptation practices since the climate change has occurred and will continue to happen.</p><p>Keywords: Coffee, climate change, production, adaptation Top of Form</p><p> </p><p><strong>Abstrak</strong></p><p>Kopi merupakan salah satu komoditas ekspor yang berperan strategis dalam perekonomian hampir dua juta rumah petani di Indonesia. Potensi ekspor kopi Indonesia cukup tinggi karena cita rasanya yang disukai, namun tren peningkatan produksi kopi nasional hanya 1-2% per tahun. Di sisi lain, dampak perubahan iklim juga mengancam tercapainya target peningkatan produksi. Makalah ini merupakan tinjauan dampak perubahan iklim terhadap produksi kopi dan strategi adaptasinya di Indonesia. Daerah penghasil utama kopi seperti Aceh, Sumatera Utara, Sumatera Selatan, Lampung, Bengkulu, Jawa Timur dan Sulawesi Selatan rentan terhadap dampak perubahan iklim. Meningkatnya kejadian iklim ekstrim seperti kekeringan akibat El Niño mengakibatkan penurunan produksi kopi 10%. Sebaliknya, musim hujan yang panjang akibat La Niña menurunkan produksi kopi hingga 80%. Dampak tidak langsung perubahan iklim adalah meningkatnya serangan hama penggerek buah kopi dan penyakit karat daun yang menyebabkan penurunan produksi sekitar 50%. Akibat kenaikan suhu, sentra produksi kopi diproyeksikan akan berpindah ke wilayah dengan elevasi yang lebih tinggi. Berbagai teknologi adaptasi telah dihasilkan, namun tingkat adaptasi petani kopi umumnya masih rendah. Kondisi ini diperparah oleh terbatasnya akses sebagian besar petani terhadap informasi iklim, pasar, teknologi, kredit usaha tani, dan informasi pengelolaan risiko iklim. Untuk mengatasi masalah tersebut, pengambil kebijakan, stakeholder, dan petani harus mengakselerasi upaya adaptasi karena perubahan iklim telah terjadi dan akan terus berlangsung.</p><p>Kata kunci: Kopi, perubahan iklim, produksi, adaptasi</p>


2020 ◽  
Vol 11 (2) ◽  
pp. 435-445 ◽  
Author(s):  
Hideo Shiogama ◽  
Ryuichi Hirata ◽  
Tomoko Hasegawa ◽  
Shinichiro Fujimori ◽  
Noriko N. Ishizaki ◽  
...  

Abstract. In 2015, El Niño contributed to severe droughts in equatorial Asia (EA). The severe droughts enhanced fire activity in the dry season (June–November), leading to massive fire emissions of CO2 and aerosols. Based on large event attribution ensembles of the MIROC5 atmospheric global climate model, we suggest that historical anthropogenic warming increased the chances of meteorological droughts exceeding the 2015 observations in the EA area. We also investigate changes in drought in future climate simulations, in which prescribed sea surface temperature data have the same spatial patterns as the 2015 El Niño with long-term warming trends. Large probability increases of stronger droughts than the 2015 event are projected when events like the 2015 El Niño occur in the 1.5 and 2.0 ∘C warmed climate ensembles according to the Paris Agreement goals. Further drying is projected in the 3.0 ∘C ensemble according to the current mitigation policies of nations. We use observation-based empirical functions to estimate burned area, fire CO2 emissions and fine (<2.5 µm) particulate matter (PM2.5) emissions from these simulations of precipitation. There are no significant increases in the chances of burned area and CO2 and PM2.5 emissions exceeding the 2015 observations due to past anthropogenic climate change. In contrast, even if the 1.5 and 2.0 ∘C goals are achieved, there are significant increases in the burned area and CO2 and PM2.5 emissions. If global warming reaches 3.0 ∘C, as is expected from the current mitigation policies of nations, the chances of burned areas and CO2 and PM2.5 emissions exceeding the 2015 observed values become approximately 100 %, at least in the single model ensembles. We also compare changes in fire CO2 emissions due to climate change and the land-use CO2 emission scenarios of five shared socioeconomic pathways, where the effects of climate change on fire are not considered. There are two main implications. First, in a national policy context, future EA climate policy will need to consider these climate change effects regarding both mitigation and adaptation aspects. Second is the consideration of fire increases changing global CO2 emissions and mitigation strategies, which suggests that future climate change mitigation studies should consider these factors.


2016 ◽  
Vol 28 (1) ◽  
Author(s):  
Tumiar Katarina Manik ◽  
Bustomi Rosadi ◽  
Eva Nurhayati

Global warming which leads to climate change has potential affect to Indonesia agriculture activities and production. Analyzing rainfall pattern and distribution is important to investigate the impact of global climate change to local climate. This study using rainfall data from 1976-2010 from both lowland and upland area of Lampung Province. The results show that rainfall tends to decrease since the 1990s which related to the years with El Nino event. Monsoonal pattern- having rain and dry season- still excist in Lampung; however, since most rain fell below the average, it could not meet crops water need. Farmers conclude that dry seasons were longer and seasonal pattern has been changed. Global climate change might affect Lampung rainfall distribution through changes on sea surface temperature which could intensify the El Nino effect. Therefore, watching the El Nino phenomena and how global warming affects it, is important in predicting local climate especially the rainfall distribution in order to prevent significant loss in agriculture productivities.


2018 ◽  
Author(s):  
Jose R Marin Jarrin ◽  
Pelayo Salinas-de-León

El Niño events heavily influence physical characteristics in the Tropical Eastern Pacific and lead to a decrease in nutrient and phytoplankton concentrations and to variation in the composition of the marine trophic chain. However, El Niño events can also provide an opportunity to evaluate the possible effects climate change may have on marine ecosystems. The Galapagos Marine Reserve coastal fin-fish fishery supports approximately 400 fishers that target species that include benthic/demersal predatory fish such as the endemic Galapagos whitespotted sandbass (Paralabrax albomaculatus), the regional endemic sailfin grouper (Mycteroperca olfax) and mottled scorpion fish (Pontinus clemensi), and the misty grouper (Hyporthodon mystacinus). The first two species are listed as vulnerable and endangered, respectively, on the IUCN red list of threatened species. Despite their potential effects on the biota, at present it is unclear how El Niño events influence artisanal fin-fish fisheries in the Galapagos. To study the impacts of El Niño events on the fishery, numerical percentage catch composition at the largest dock in Santa Cruz Island was recorded during March and April 2013, 2014 and 2016 and compared. Compositions were significantly different between 2016 and both 2013 and 2014, but not between 2013 and 2014. These differences appear to have been due to the appearance of uncommon demersal/benthic predatory fish such as Grape eye seabass (Hemilutjanus macrophthalmos) and Pacific dog snapper (Lutjanus novemfasciatus). Size frequency distributions also varied, with significantly larger sizes of several species observed in 2016 when compared to 2013 or 2014. These changes in catch composition and size may be a product of a reduction in nutrient concentration and primary production that led to an increase in water clarity and decrease in prey biomass that forced these benthic fish species to change their feeding behavior and strike at baits that usually would not be easily detected. Because of the conservative life history many of these benthic predatory fish exhibit and the absence of any form of management for fish species in the GMR, El Niño events may have profound effects on their populations due to the elimination of the largest individuals. Management actions, such as size and catch limits and closures, directed at reducing the impact of the fishery on these important fish populations in the near- (El Niños) and long-term (climate change) future should be encouraged.


Sign in / Sign up

Export Citation Format

Share Document