scholarly journals Hierarchy processing in human neurobiology: how specific is it?

2019 ◽  
Vol 375 (1789) ◽  
pp. 20180391 ◽  
Author(s):  
Angela D. Friederici

Although human and non-human animals share a number of perceptual and cognitive abilities, they differ in their ability to process hierarchically structured sequences. This becomes most evident in the human capacity to process natural language characterized by structural hierarchies. This capacity is neuroanatomically grounded in the posterior part of left Broca's area (Brodmann area (BA) 44), located in the inferior frontal gyrus, and its dorsal white matter fibre connection to the temporal cortex. Within this neural network, BA 44 itself subserves hierarchy building and the strength of its connection to the temporal cortex correlates with the processing of syntactically complex sentences. Whether these brain structures are also relevant for other human cognitive abilities is a current debate. Here, this question will be evaluated with respect to those human cognitive abilities that are assumed to require hierarchy building, such as music, mathematics and Theory of Mind. Rather than supporting a domain-general view, the data indicate domain-selective neural networks as the neurobiological basis for processing hierarchy in different cognitive domains. Recent cross-species white matter comparisons suggest that particular connections within the networks may make the crucial difference in the brain structure of human and non-human primates, thereby enabling cognitive functions specific to humans. This article is part of the theme issue ‘What can animal communication teach us about human language?’

2021 ◽  
Vol 12 ◽  
Author(s):  
Stephanie K. Ries ◽  
Krista L. Schendel ◽  
Timothy J. Herron ◽  
Nina F. Dronkers ◽  
Juliana V. Baldo ◽  
...  

Proactive interference in working memory refers to the fact that memory of past experiences can interfere with the ability to hold new information in working memory. The left inferior frontal gyrus (LIFG) has been proposed to play an important role in resolving proactive interference in working memory. However, the role of white matter pathways and other cortical regions has been less investigated. Here we investigated proactive interference in working memory using the Recent Probes Test (RPT) in 15 stroke patients with unilateral chronic lesions in left (n = 7) or right (n = 2) prefrontal cortex (PFC), or left temporal cortex (n = 6). We examined the impact of lesions in both gray and white matter regions on the size of the proactive interference effect. We found that patients with left PFC lesions performed worse overall, but the proactive interference effect in this patient group was comparable to that of patients with right PFC lesions, temporal lobe lesions, and controls. Interestingly, the size of the interference effect was significantly correlated with the degree of damage in the extreme/external capsule and marginally correlated with the degree of damage in the inferior frontal occipital fasciculus (IFOF). These findings suggests that ventral white matter pathways connecting the LIFG to left posterior regions play a role in resolving proactive interference in working memory. This effect was particularly evident in one patient with a very large interference effect (>3 SDs above controls) who had mostly spared LIFG, but virtually absent ventral white matter pathways (i.e., passing through the extreme/external capsules and IFOF). This case study further supports the idea that the role of the LIFG in resolving interference in working memory is dependent on connectivity with posterior regions via ventral white matter pathways.


2010 ◽  
Vol 113 (6) ◽  
pp. 1251-1258 ◽  
Author(s):  
Matthieu Vassal ◽  
Emmanuelle Le Bars ◽  
S.T. Sylvie Moritz-Gasser ◽  
Nicolas Menjot ◽  
Hugues Duffau

Object Crossed aphasia (aphasia resulting from a right hemispheric lesion among right-handed patients) is rare. The authors describe for the first time transient crossed aphasia elicited by intraoperative electrostimulation of both cortex and white matter pathways in awake patients. Methods Three right-handed adults underwent surgery for a right-sided glioma. Because slight language disorders occurred during partial seizures or were identified on preoperative cognitive assessment, with right activations detected on language functional MR imaging in 1 patient, awake craniotomy was performed using intraoperative cortico-subcortical electrical functional mapping. Results Transient language disturbances were elicited by stimulating discrete cortical areas (inferior frontal gyrus and posterior part of the superior temporal gyrus) and white matter pathways (inferior frontooccipital fasciculus and arcuate fasciculus). A subtotal resection was achieved in all cases, according to functional boundaries. Postoperatively, 1 patient experienced a transient dysphasia, which resolved after speech rehabilitation, with no permanent deficit. Conclusions These original findings highlight the possibility of finding crucial cortico-subcortical language networks in the right hemisphere in a subgroup of atypical right-handed patients. These findings provide new insights into the neural basis of language, by underlining the role of the right inferior occipitofrontal fasciculus in semantics and that of the right arcuate fasciculus in phonology, and by supporting the hypothesis of a mirror organization between the right and left hemispheres. The authors suggest that, in right-handed patients, if language disturbances are detected during seizures or on presurgical neuropsychological assessment, especially when right activations are observed on language functional MR imaging, awake craniotomy with intraoperative language mapping should be considered.


Author(s):  
Angela D. Friederici ◽  
Noam Chomsky

This chapter reviews the neural underpinning of normal language acquisition and asks not only at which age certain milestones in language acquisition are achieved, but moreover to what extent is this achievement dependent on the maturation of particular brain structures. In our recent model, the neural basis of the developing language system is described to reflect two major phases. The available data provide consistent evidence that very early on an infant is able to extract language-relevant information from the acoustic input. This first phase covers the first three years of life when language processing is largely input-driven and supported by the temporal cortex and the ventral part of the network. A second phase extends beyond age 3, when top-down processes come into play, and the left inferior frontal cortex and the dorsal part of the language network are recruited to a larger extent. Development towards full language performance beyond age 3 is dependent on maturational changes in the gray and white matter. An increased language ability is correlated with an increase in structural and functional connectivity between language-related brain regions in the left hemisphere, the inferior frontal gyrus and the posterior superior temporal gyrus/superior temporal sulcus.


2020 ◽  
Author(s):  
Christos Pliatsikas ◽  
Lotte Meteyard ◽  
João Veríssimo ◽  
Vincent Deluca ◽  
Kyle Shattuck ◽  
...  

Bilingualism affects the structure of the brain in adults. This is indicated by experience-dependent gray and white matter changes in brain structures implicated in language learning, processing, or control. However, limited evidence exists on how bilingualism may influence brain development. We examined the developmental trajectories of both grey and white matter structures in a cross-sectional study of a large sample (N=711 for grey matter, N=637 for white matter) of bilingual and monolingual participants, aged 3-21 years. Metrics of grey matter (thickness, volume, surface area) and white matter (fractional anisotropy, mean diffusivity) were examined across 41 cortical and subcortical brain structures and 20 tracts, respectively. We used generalised additive modelling to analyse whether, how, and where the developmental trajectories of bilinguals and monolinguals might differ. Bilingual and monolingual participants manifested distinct developmental trajectories in both gray and white matter structures. As compared to monolinguals, bilinguals showed: a) more gray matter (less developmental loss) starting during late childhood and adolescence, mainly in frontal and parietal regions (particularly in inferior frontal gyrus pars opercularis, superior frontal cortex, inferior and superior parietal cortex, and the precuneus); and b) higher white matter integrity (greater developmental increase) starting during mid-late adolescence, specifically in striatal-inferior frontal fibers. The data suggest that there may be a developmental basis to the well-documented structural differences in the brain between bilingual and monolingual adults.


Author(s):  
Thomaz R. Mostardeiro ◽  
Ananya Panda ◽  
Robert J. Witte ◽  
Norbert G. Campeau ◽  
Kiaran P. McGee ◽  
...  

Abstract Purpose MR fingerprinting (MRF) is a MR technique that allows assessment of tissue relaxation times. The purpose of this study is to evaluate the clinical application of this technique in patients with meningioma. Materials and methods A whole-brain 3D isotropic 1mm3 acquisition under a 3.0T field strength was used to obtain MRF T1 and T2-based relaxometry values in 4:38 s. The accuracy of values was quantified by scanning a quantitative MR relaxometry phantom. In vivo evaluation was performed by applying the sequence to 20 subjects with 25 meningiomas. Regions of interest included the meningioma, caudate head, centrum semiovale, contralateral white matter and thalamus. For both phantom and subjects, mean values of both T1 and T2 estimates were obtained. Statistical significance of differences in mean values between the meningioma and other brain structures was tested using a Friedman’s ANOVA test. Results MR fingerprinting phantom data demonstrated a linear relationship between measured and reference relaxometry estimates for both T1 (r2 = 0.99) and T2 (r2 = 0.97). MRF T1 relaxation times were longer in meningioma (mean ± SD 1429 ± 202 ms) compared to thalamus (mean ± SD 1054 ± 58 ms; p = 0.004), centrum semiovale (mean ± SD 825 ± 42 ms; p < 0.001) and contralateral white matter (mean ± SD 799 ± 40 ms; p < 0.001). MRF T2 relaxation times were longer for meningioma (mean ± SD 69 ± 27 ms) as compared to thalamus (mean ± SD 27 ± 3 ms; p < 0.001), caudate head (mean ± SD 39 ± 5 ms; p < 0.001) and contralateral white matter (mean ± SD 35 ± 4 ms; p < 0.001) Conclusions Phantom measurements indicate that the proposed 3D-MRF sequence relaxometry estimations are valid and reproducible. For in vivo, entire brain coverage was obtained in clinically feasible time and allows quantitative assessment of meningioma in clinical practice.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
C. Leroy ◽  
S. Chanraud ◽  
E. Artiges ◽  
C. Martelli ◽  
A. Cachia ◽  
...  

Background:Brain models of drug addiction are being tackled in humans, using PET and MRI.Results:1.Whereas tobacco and cannabis do not interact directly with dopamine sites, positron emission tomography detected lower availability in sites regulating the catecholamines homeostasis, notably in dopamine transporter sites in striatal and in extrastriatal regions. This further supports repeated and long term substance use progress towards an adaptative diminished basal dopamine level that would contribute to the switch to an addicted brain.2.Alcohol: abnormalities in brain macro- and micro- structure were searched in detoxified alcohol-dependents with preserved psychosocial functioning:-Brain function (fMRI): fronto-cerebellar overactivation detected during an auditory language task in alcohol-dependents may reflect the compensatory effort required for patients to maintain the same level of performance as controls.-Brain macrostructure (MRI). Widespread lower white matter volumes, and lower grey matter volumes in the frontal lobe, insula, hippocampus, thalami and cerebellum, were detected. Poorer neuropsychological performance correlated with smaller grey matter volumes in these regions and with lower white matter volume in the brainstem.-Brain microstructure (DTI): tractography of white matter fiber bundles revealed that brainstem bundles alteration may contribute to cognitive flexibility impairment. Regression analyses showed memory scores were related to brain microstructure in parahippocampal areas, frontal cortex, and left temporal cortex. This suggest diffusion imaging (DTI) is a useful probe to early alcohol-induced brain alterations.Conclusion:While indices of dopamine down-regulation are consistency detected in several drug addictions, even “socially-adapted” alcohol dependence may induce change in brain structure.Psychol Med. 1998 28:1039-48.Neuropsychopharmacology. 2007 32:429-38.IEEE Trans Med Imaging. 2007 26:553-65J Nucl Med. 2007 48:538-46.Neuropsychopharmacology (Chanraud S et al., 2008 Jul 9. [Epub ahead of print]).J Clin Psychopharmacol (Leroy C et al, in press).


2017 ◽  
Vol 29 (9) ◽  
pp. 1605-1620 ◽  
Author(s):  
Yun-Hsuan Yang ◽  
William D. Marslen-Wilson ◽  
Mirjana Bozic

Prominent neurobiological models of language follow the widely accepted assumption that language comprehension requires two principal mechanisms: a lexicon storing the sound-to-meaning mapping of words, primarily involving bilateral temporal regions, and a combinatorial processor for syntactically structured items, such as phrases and sentences, localized in a left-lateralized network linking left inferior frontal gyrus (LIFG) and posterior temporal areas. However, recent research showing that the processing of simple phrasal sequences may engage only bilateral temporal areas, together with the claims of distributional approaches to grammar, raise the question of whether frequent phrases are stored alongside individual words in temporal areas. In this fMRI study, we varied the frequency of words and of short and long phrases in English. If frequent phrases are indeed stored, then only less frequent items should generate selective left frontotemporal activation, because memory traces for such items would be weaker or not available in temporal cortex. Complementary univariate and multivariate analyses revealed that, overall, simple words (verbs) and long phrases engaged LIFG and temporal areas, whereas short phrases engaged bilateral temporal areas, suggesting that syntactic complexity is a key factor for LIFG activation. Although we found a robust frequency effect for words in temporal areas, no frequency effects were found for the two phrasal conditions. These findings support the conclusion that long and short phrases are analyzed, respectively, in the left frontal network and in a bilateral temporal network but are not retrieved from memory in the same way as simple words during spoken language comprehension.


2016 ◽  
Vol 116 (3) ◽  
pp. 920-937 ◽  
Author(s):  
Jennifer Barredo ◽  
Timothy D. Verstynen ◽  
David Badre

Functional magnetic resonance imaging (fMRI) evidence indicates that different subregions of ventrolateral prefrontal cortex (VLPFC) participate in distinct cortical networks. These networks have been shown to support separable cognitive functions: anterior VLPFC [inferior frontal gyrus (IFG) pars orbitalis] functionally correlates with a ventral fronto-temporal network associated with top-down influences on memory retrieval, while mid-VLPFC (IFG pars triangularis) functionally correlates with a dorsal fronto-parietal network associated with postretrieval control processes. However, it is not known to what extent subregional differences in network affiliation and function are driven by differences in the organization of underlying white matter pathways. We used high-angular-resolution diffusion spectrum imaging and functional connectivity analysis in unanesthetized humans to address whether the organization of white matter connectivity differs between subregions of VLPFC. Our results demonstrate a ventral-dorsal division within IFG. Ventral IFG as a whole connects broadly to lateral temporal cortex. Although several different individual white matter tracts form connections between ventral IFG and lateral temporal cortex, functional connectivity analysis of fMRI data indicates that these are part of the same ventral functional network. By contrast, across subdivisions, dorsal IFG was connected with the midfrontal gyrus and correlated as a separate dorsal functional network. These qualitative differences in white matter organization within larger macroanatomical subregions of VLPFC support prior functional distinctions among these regions observed in task-based and functional connectivity fMRI studies. These results are consistent with the proposal that anatomical connectivity is a crucial determinant of systems-level functional organization of frontal cortex and the brain in general.


2021 ◽  
Author(s):  
Osama Hamadelseed ◽  
Thomas Skutella

Abstract INTRODUCTION: Down syndrome (DS) is the most common genetic cause of intellectual disability. Here, we use magnetic resonance imaging (MRI) on children and adults with DS to characterize changes in the volume of specific brain structures involved in memory and language and their relationship to features of cognitive-behavioral phenotypes.METHODS: Thirteen children and adults with the DS phenotype and 12 age- and gender-matched healthy controls were analyzed by MRI and underwent a psychological evaluation for language and cognitive abilities.RESULTS: The neuropsychological profile of DS patients showed deficits in different cognition and language domains in correlation with reduced volumes of specific regional and subregional brain structures.CONCLUSIONS: The memory functions and language skills affected in our DS patients correlate significantly with the reduced volume of specific brain regions, allowing us to understand DS's cognitive-behavioral phenotype. Our results provide an essential basis for early intervention and the design of rehabilitation management protocols.


Sign in / Sign up

Export Citation Format

Share Document