scholarly journals Thermosensitive sex chromosome dosage compensation in ZZ/ZW softshell turtles, Apalone spinifera

2021 ◽  
Vol 376 (1833) ◽  
pp. 20200101
Author(s):  
Basanta Bista ◽  
Zhiqiang Wu ◽  
Robert Literman ◽  
Nicole Valenzuela

Sex chromosome dosage compensation (SCDC) overcomes gene-dose imbalances that disturb transcriptional networks, as when ZW females or XY males are hemizygous for Z/X genes. Mounting data from non-model organisms reveal diverse SCDC mechanisms, yet their evolution remains obscure, because most informative lineages with variable sex chromosomes are unstudied. Here, we discovered SCDC in turtles and an unprecedented thermosensitive SCDC in eukaryotes. We contrasted RNA-seq expression of Z-genes, their autosomal orthologues, and control autosomal genes in Apalone spinifera (ZZ/ZW) and Chrysemys picta turtles with temperature-dependent sex determination (TSD) (proxy for ancestral expression). This approach disentangled chromosomal context effects on Z-linked and autosomal expression, from lineage effects owing to selection or drift. Embryonic Apalone SCDC is tissue- and age-dependent, regulated gene-by-gene, complete in females via Z-upregulation in both sexes (Type IV) but partial and environmentally plastic via Z-downregulation in males (accentuated at colder temperature), present in female hatchlings and a weakly suggestive in adult liver (Type I). Results indicate that embryonic SCDC evolved with/after sex chromosomes in Apalone 's family Tryonichidae, while co-opting Z-gene upregulation present in the TSD ancestor. Notably, Apalone 's SCDC resembles pygmy snake's, and differs from the full-SCDC of Anolis lizards who share homologous sex chromosomes (XY), advancing our understanding of how XX/XY and ZZ/ZW systems compensate gene-dose imbalance. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.

2020 ◽  
Author(s):  
Michail Rovatsos ◽  
Lukáš Kratochvíl

AbstractOrganisms evolved various mechanisms to cope with the differences in the gene copy numbers between sexes caused by degeneration of Y and W sex chromosomes. Complete dosage compensation or at least expression balance between sexes was reported predominantly in XX/XY, but rarely in ZZ/ZW systems. However, this often-reported pattern is based on comparisons of lineages where sex chromosomes evolved from non-homologous genomic regions, potentially differing in sensitivity to differences in gene copy numbers. Here we document that two reptilian lineages (XX/XY iguanas and ZZ/ZW softshell turtles), which independently co-opted the same ancestral genomic region for the function of sex chromosomes, evolved different gene dose regulatory mechanisms. The independent co-option of the same genomic region for the role of sex chromosome as in the iguanas and the softshell turtles offers a great opportunity for testing evolutionary scenarios on the sex chromosome evolution under the explicit control for the genomic background and for gene identity. We showed that the parallel loss of functional genes from the Y chromosome of the green anole and the W chromosome of the Florida softshell turtle led to different dosage compensation mechanisms. Our approach controlling for genetic background thus does not support that the variability in the regulation of the gene dose differences is a consequence of ancestral autosomal gene content.


2019 ◽  
Vol 116 (38) ◽  
pp. 19031-19036 ◽  
Author(s):  
Iulia Darolti ◽  
Alison E. Wright ◽  
Benjamin A. Sandkam ◽  
Jake Morris ◽  
Natasha I. Bloch ◽  
...  

Once recombination is halted between the X and Y chromosomes, sex chromosomes begin to differentiate and transition to heteromorphism. While there is a remarkable variation across clades in the degree of sex chromosome divergence, far less is known about the variation in sex chromosome differentiation within clades. Here, we combined whole-genome and transcriptome sequencing data to characterize the structure and conservation of sex chromosome systems across Poeciliidae, the livebearing clade that includes guppies. We found that the Poecilia reticulata XY system is much older than previously thought, being shared not only with its sister species, Poecilia wingei, but also with Poecilia picta, which diverged roughly 20 million years ago. Despite the shared ancestry, we uncovered an extreme heterogeneity across these species in the proportion of the sex chromosome with suppressed recombination, and the degree of Y chromosome decay. The sex chromosomes in P. reticulata and P. wingei are largely homomorphic, with recombination in the former persisting over a substantial fraction. However, the sex chromosomes in P. picta are completely nonrecombining and strikingly heteromorphic. Remarkably, the profound degradation of the ancestral Y chromosome in P. picta is counterbalanced by the evolution of functional chromosome-wide dosage compensation in this species, which has not been previously observed in teleost fish. Our results offer important insight into the initial stages of sex chromosome evolution and dosage compensation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chrysanthi Taxiarchi ◽  
Nace Kranjc ◽  
Antonios Kriezis ◽  
Kyros Kyrou ◽  
Federica Bernardini ◽  
...  

Abstract Although of high priority for the development of genetic tools to control malaria-transmitting mosquitoes, only a few germline-specific regulatory regions have been characterised to date and the presence of global regulatory mechanisms, such as dosage compensation and meiotic sex chromosome inactivation (MSCI), are mostly assumed from transcriptomic analyses of reproductive tissues or whole gonads. In such studies, samples include a significant portion of somatic tissues inevitably complicating the reconstruction of a defined transcriptional map of gametogenesis. By exploiting recent advances in transgenic technologies and gene editing tools, combined with fluorescence-activated cell sorting and RNA sequencing, we have separated four distinct cell lineages from the Anopheles gambiae male gonads: premeiotic, meiotic (primary and secondary spermatocytes) and postmeiotic. By comparing the overall expression levels of X-linked and autosomal genes across the four populations, we revealed a striking transcriptional repression of the X chromosome coincident with the meiotic phase, classifiable as MSCI, and highlighted genes that may evade silencing. In addition, chromosome-wide median expression ratios of the premeiotic population confirmed the absence of dosage compensation in the male germline. Applying differential expression analysis, we highlighted genes and transcript isoforms enriched at specific timepoints and reconstructed the expression dynamics of the main biological processes regulating the key stages of sperm development and maturation. We generated the first transcriptomic atlas of A. gambiae spermatogenesis that will expand the available toolbox for the genetic engineering of vector control technologies. We also describe an innovative and multidimensional approach to isolate specific cell lineages that can be used for the targeted analysis of other A. gambiae organs or transferred to other medically relevant species and model organisms.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Michael B. Wells ◽  
Györgyi Csankovszki ◽  
Laura M. Custer

Dosage compensation balances gene expression levels between the sex chromosomes and autosomes and sex-chromosome-linked gene expression levels between the sexes. Different dosage compensation strategies evolved in different lineages, but all involve changes in chromatin. This paper discusses our current understanding of how modifications of the histone H4 tail, particularly changes in levels of H4 lysine 16 acetylation and H4 lysine 20 methylation, can be used in different contexts to either modulate gene expression levels twofold or to completely inhibit transcription.


Genetics ◽  
1994 ◽  
Vol 138 (3) ◽  
pp. 787-790
Author(s):  
P R da Cunha ◽  
B Granadino ◽  
A L Perondini ◽  
L Sánchez

Abstract Dosage compensation refers to the process whereby females and males with different doses of sex chromosomes have similar amounts of products from sex chromosome-linked genes. We analyzed the process of dosage compensation in Sciara ocellaris, Diptera of the suborder Nematocera. By autoradiography and measurements of X-linked rRNA in females (XX) and males (XO), we found that the rate of transcription of the single X chromosome in males is similar to that of the two X chromosomes in females. This, together with the bloated appearance of the X chromosome in males, support the idea that in sciarids dosage compensation is accomplished by hypertranscription of the X chromosome in males.


2019 ◽  
Author(s):  
Iulia Darolti ◽  
Alison E. Wright ◽  
Benjamin A. Sandkam ◽  
Jake Morris ◽  
Natasha I. Bloch ◽  
...  

ABSTRACTOnce recombination is halted between the X and Y chromosome, sex chromosomes begin to differentiate and transition to heteromorphism. While there is a remarkable variation across clades in the degree of sex chromosome divergence, far less is known about variation in sex chromosome differentiation within clades. Here, we combined whole genome and transcriptome sequencing data to characterise the structure and conservation of sex chromosome systems across Poeciliidae, the livebearing clade that includes guppies. We found that the Poecilia reticulata XY system is much older than previously thought, being shared not only with its sister species, Poecilia wingei, but also with Poecilia picta, which diverged 30 mya. Despite the shared ancestry, we uncovered an extreme heterogeneity across these species in the proportion of the sex chromosome with suppressed recombination, and the degree of Y chromosome decay. The sex chromosomes in P. reticulata are largely homomorphic, with recombination persisting over a substantial fraction. However, the sex chromosomes in P. picta are completely non-recombining and strikingly heteromorphic. ln addition to being highly divergent, the sex chromosome system in P. picta includes a neo-sex chromosome, the result of a fusion between the ancestral sex chromosome and part of chromosome 7. Remarkably, the profound degradation of the ancestral Y chromosome in P. picta is counterbalanced by the evolution of complete dosage compensation in this species, the first such documented case in teleost fish. Our results offer important insight into the initial stages of sex chromosome evolution and dosage compensation.


2020 ◽  
Author(s):  
Jiabi Chen ◽  
Menghan Wang ◽  
Xionglei He ◽  
Jian-Rong Yang ◽  
Xiaoshu Chen

ABSTRACTThe evolution of sex chromosomes in the XY or ZW systems shall lead to gene expression dosage problems, as in at least one of the sexes, the sex-linked gene dose has been reduced by half. It has been proposed, most notably by Susumu Ohno for mammals, that the transcriptional output of the whole sex chromosome should be doubled for a complete dosage compensation. However, due to the variability of the existing methods to determine the transcriptional differences between Sex chromosomes and Autosomes (S:A ratios) in different studies, whether clade-specific results are comparable and whether there is a more general model to explain dosage compensation states remain unanswered. In this study, we collected more than 500 public RNA-seq datasets from multiple tissues and species in major clades (including mammals, birds, fishes, insects, and worms) and proposed a unified computational framework for unbiased and comparable measurement of the S:A ratios of multiple species. We also tested the evolution of dosage compensation more directly by assessing changes in the expression levels of the current sex-linked genes relative to those of the ancestral sex-linked genes. We found that in mammals and birds, the S:A ratio is approximately 0.5, while in insects, fishes and flatworms, the S:A ratio is approximately 1. Further analysis showed that the fraction of dosage-sensitive housekeeping genes on the sex chromosome is significantly correlated with the S:A ratio. In addition, the degree of degradation of the Y chromosome may be responsible for the change in the S:A ratio in mammals without a dosage-compensation mechanism. Our observations offer unequivocal support for the sex chromosome insensitivity hypothesis in animals and suggest that the dosage sensitivity states of sex chromosomes is a major factor underlying different evolutionary strategies of dosage compensation.


2021 ◽  
Author(s):  
David C.H. Metzger ◽  
Benjamin A. Sandkam ◽  
Iulia Darolti ◽  
Judith E. Mank

ABSTRACTDosage compensation balances gene expression between the sexes in systems with diverged heterogametic sex chromosomes. Theory predicts that dosage compensation should rapidly evolve in parallel with the divergence of sex chromosomes to prevent the deleterious effects of dosage imbalances that occur as a result of sex chromosome divergence. Examples of complete dosage compensation, where gene expression of the entire sex chromosome is compensated, are rare and have only been found in relatively ancient sex chromosome systems. Consequently, very little is known about the evolutionary dynamics of complete dosage compensation systems. We recently found the first example of complete dosage compensation in a fish, Poecilia picta. We also found that the Y chromosome degraded substantially in the common ancestor of P. picta and their close relative Poecilia parae. In this study we find that P. parae also have complete dosage compensation, thus complete dosage compensation likely evolved in the short (∼3.7 my) interval after the split of the ancestor of these two species from P. reticulata, but before they diverged from each other. These data suggest that novel dosage compensation mechanisms can evolve rapidly, thus supporting the longstanding theoretical prediction that such mechanisms arise in parallel with rapidly diverging sex chromosomes.SIGNIFICANCE STATEMENTIn species with XY sex chromosomes, females (XX) have as many copies of X-linked genes compared to males (XY), leading to unbalanced expression between the sexes. Theory predicts that dosage compensation mechanisms should evolve rapidly as X and Y chromosomes diverge, but examples of complete dosage compensation in recently diverged sex chromosomes are scarce, making this theory difficult to test. Across Poeciliid species the X and Y chromosomes have recently diversified. Here we find complete dosage compensation evolved rapidly as the X and Y diverged in the common ancestor of Poecilia parae and P. picta, supporting that novel dosage compensation mechanisms can evolve rapidly in tandem with diverging sex chromosomes. These data confirm longstanding theoretical predictions of sex chromosome evolution.


2020 ◽  
Vol 12 (6) ◽  
pp. 750-763 ◽  
Author(s):  
Benjamin L S Furman ◽  
David C H Metzger ◽  
Iulia Darolti ◽  
Alison E Wright ◽  
Benjamin A Sandkam ◽  
...  

Abstract Genomic analysis of many nonmodel species has uncovered an incredible diversity of sex chromosome systems, making it possible to empirically test the rich body of evolutionary theory that describes each stage of sex chromosome evolution. Classic theory predicts that sex chromosomes originate from a pair of homologous autosomes and recombination between them is suppressed via inversions to resolve sexual conflict. The resulting degradation of the Y chromosome gene content creates the need for dosage compensation in the heterogametic sex. Sex chromosome theory also implies a linear process, starting from sex chromosome origin and progressing to heteromorphism. Despite many convergent genomic patterns exhibited by independently evolved sex chromosome systems, and many case studies supporting these theoretical predictions, emerging data provide numerous interesting exceptions to these long-standing theories, and suggest that the remarkable diversity of sex chromosomes is matched by a similar diversity in their evolution. For example, it is clear that sex chromosome pairs are not always derived from homologous autosomes. In addition, both the cause and the mechanism of recombination suppression between sex chromosome pairs remain unclear, and it may be that the spread of recombination suppression is a more gradual process than previously thought. It is also clear that dosage compensation can be achieved in many ways, and displays a range of efficacy in different systems. Finally, the remarkable turnover of sex chromosomes in many systems, as well as variation in the rate of sex chromosome divergence, suggest that assumptions about the inevitable linearity of sex chromosome evolution are not always empirically supported, and the drivers of the birth–death cycle of sex chromosome evolution remain to be elucidated. Here, we concentrate on how the diversity in sex chromosomes across taxa highlights an equal diversity in each stage of sex chromosome evolution.


2021 ◽  
Author(s):  
Zexian Zhu ◽  
Kazumi Matsubara ◽  
Foyez Shams ◽  
Jason Dobry ◽  
Erik Wapstra ◽  
...  

Reptile sex determination is attracting much attention because the great diversity of sex-determination and dosage compensation mechanisms permits us to approach fundamental questions about sex chromosome turnover and evolution. However, reptile sex chromosome variation remains largely uncharacterized and no reptile master sex determination genes have yet been identified. Here we describe a powerful and cost-effective chromosomics approach, combining probes generated from the microdissected sex chromosomes with transcriptome sequencing to explore this diversity in non-model Australian reptiles with heteromorphic or cryptic sex chromosomes. We tested the pipeline on a turtle, a gecko, and a worm-lizard, and we also identified sequences located on sex chromosomes in a monitor lizard using linked-read sequencing. Genes identified on sex chromosomes were compared to the chicken genome to identify homologous regions among the four species. We identified candidate sex determining genes within these regions, including conserved vertebrate sex-determining genes pdgfa, pdgfra amh and wt1, and demonstrated their testis or ovary-specific expression. All four species showed gene-by-gene rather than chromosome-wide dosage compensation. Our results imply that reptile sex chromosomes originated by the independent acquisition of sex-determining genes on different autosomes, as well as translocations between different ancestral macro- and micro-chromosomes. We discuss the evolutionary drivers of the slow differentiation, but rapid turnover, of reptile sex chromosomes.


Sign in / Sign up

Export Citation Format

Share Document