scholarly journals Expression of type 1 fimbriae (SEF 21) of Salmonella enterica serotype Enteritidis in the early colonisation of the rat intestine

2001 ◽  
Vol 50 (2) ◽  
pp. 191-197 ◽  
Author(s):  
PATRICK J. NAUGHTON ◽  
GEORGE GRANT ◽  
SUSAN BARDOCZ ◽  
EMMA ALLEN-VERCOE ◽  
MARTIN J. WOODWARD ◽  
...  
Microbiology ◽  
2010 ◽  
Vol 156 (6) ◽  
pp. 1738-1748 ◽  
Author(s):  
Krzysztof Grzymajło ◽  
Marta Kuźmińska-Bajor ◽  
Jakub Jaworski ◽  
Piotr Dobryszycki ◽  
Maciej Ugorski

The binding properties of low- and high-adhesive forms of FimH adhesins from Salmonella enterica serovars Enteritidis and Typhimurium (S. Enteritidis and S. Typhimurium) were studied using chimeric proteins containing an additional peptide that represents an N-terminal extension of the FimF protein. This modification, by taking advantage of a donor strand exchange mechanism, closes the hydrophobic groove in the fimbrial domain of the FimH adhesin. Such self-complemented adhesins (scFimH) did not form aggregates and were more stable (resistant to proteolytic cleavage) than native FimH. High-adhesive variants of scFimH proteins, with alanine at position 61 and serine at position 118, were obtained by site-directed mutagenesis of fimH genes from low-adhesive variants of S. Enteritidis and S. Typhimurium, with glycine at position 61 and phenylalanine at position 118. Direct kinetic analysis using surface plasmon resonance (SPR) and glycoproteins carrying high-mannose carbohydrate chains (RNase B, horseradish peroxidase and mannan-BSA) revealed the existence of high- and low-adhesive allelic variants, not only in S. Typhimurium but also in S. Enteritidis. Using two additional mutants of low-adhesive FimH protein from S. Enteritidis (Gly61Ala and Phe118Ser), SPR analysis pointed to Ser118 as the major determinant of the high-adhesive phenotype of type 1 fimbriae from S. Enteritidis. These studies demonstrated for the first time that the functional differences observed with whole fimbriated bacteria could be reproduced at the level of purified adhesin. They strongly suggest that the adhesive properties of type 1 fimbriae are determined only by structural differences in the FimH proteins and are not influenced by the fimbrial shaft on which the adhesin is located.


2005 ◽  
Vol 73 (9) ◽  
pp. 6187-6190 ◽  
Author(s):  
Dagmara Kisiela ◽  
Anna Sapeta ◽  
Maciej Kuczkowski ◽  
Tadeusz Stefaniak ◽  
Alina Wieliczko ◽  
...  

ABSTRACT Recombinant FimH adhesins of type 1 fimbriae from Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum, in contrast to those of Salmonella enterica serovar Typhimurium, did not bind to high-mannose oligosaccharides or to human colon carcinoma HT-29 cells. However, mutated FimH proteins from biovar Gallinarum and biovar Pullorum, in which the isoleucine at position 78 was replaced by the threonine found in S. enterica serovar Typhimurium, bound well to glycoproteins carrying high-mannose oligosaccharides and colon carcinoma cells. The loss of sugar-binding properties by biovar Gallinarum and biovar Pullorum FimH adhesins, which are a part of the type 1 fimbriae, is most probably the result of a single T78I mutation, as was proven by site-directed mutagenesis of FimH proteins.


2007 ◽  
Vol 190 (2) ◽  
pp. 602-612 ◽  
Author(s):  
Kirsty A. McFarland ◽  
Sacha Lucchini ◽  
Jay C. D. Hinton ◽  
Charles J. Dorman

ABSTRACT The fim operon of Salmonella enterica serovar Typhimurium encodes type 1 fimbriae. The expression of fim is controlled in response to environmental signals through a complex regulatory cascade involving the proteins FimW, FimY, and FimZ and a genetic locus, fimU, that encodes a rare arginine tRNA. We discovered that a knockout mutation in lrp, the gene that codes for the leucine-responsive regulatory protein (Lrp), inhibited fim transcription. The loss of fim gene expression was accompanied by a corresponding loss of the mannose-sensitive hemagglutination that is a characteristic of type 1 fimbriae. Normal type 1 fimbrial expression was restored following the introduction into the knockout mutant of a plasmid carrying a functional copy of the lrp gene. Electrophoretic mobility shift analysis revealed no interactions between purified Lrp protein and the regulatory region of the fimA, fimU, or fimW gene. Instead, Lrp produced protein-DNA complexes with the regulatory region of the fimZ gene, and the nature of these complexes was leucine sensitive. DNase I footprinting showed that Lrp binds within a region between −65 and −170 with respect to the fimZ transcription start site, consistent with the binding and wrapping of the DNA in this upstream region. Ectopic expression of the fimZ gene from an inducible promoter caused Lrp-independent type 1 fimbriation in serovar Typhimurium. These data show that Lrp makes a positive contribution to fim gene expression through direct interaction with the fimZ promoter region, possibly by antagonizing the binding of the H-NS global repressor protein.


2003 ◽  
Vol 71 (11) ◽  
pp. 6446-6452 ◽  
Author(s):  
Carrie Althouse ◽  
Sheila Patterson ◽  
Paula Fedorka-Cray ◽  
Richard E. Isaacson

ABSTRACT Salmonella enterica serovar Typhimurium strain 798 is a clinical isolate from a pig and is known to be able to cause persistent, asymptomatic infections. This strain also is known to exist in two phenotypes (adhesive and nonadhesive to enterocytes) and can switch between the two phenotypes at a rate consistent with phase variation. Cells in the adhesive phenotype are more readily phagocytosed by leukocytes than nonadhesive cells. Once in a leukocyte, adhesive-phase cells survive while nonadhesive-phase cells die. In the present study, nonadhesive mutants were obtained with the transposon TnphoA. A nonadhesive mutant was selected for study and was shown by electron microscopy not to produce fimbriae. The gene encoding the adhesin was cloned and sequenced. Based on its sequence, the adhesin was shown to be FimA, the major subunit of type 1 fimbriae. The nonadhesive mutant was attenuated in its ability to colonize both mouse and pig intestines, but remained capable of systemic spread in mice. The nonadhesive mutant was phagocytosed to the same extent as parental cells in the adhesive phase and then survived intracellularly. These results demonstrated that type 1 fimbriae were important for attachment to enterocytes and promoted intestinal colonization. However, they were not important in promoting phagocytosis or intracellular survival.


2012 ◽  
Vol 80 (9) ◽  
pp. 3289-3296 ◽  
Author(s):  
Sarah A. Zeiner ◽  
Brett E. Dwyer ◽  
Steven Clegg

ABSTRACTSalmonella entericaserovar Typhimurium is a Gram-negative member of the familyEnterobacteriaceaeand is a common cause of bacterial food poisoning in humans. The fimbrial appendages are found on the surface of many enteric bacteria and enable the bacteria to bind to eukaryotic cells.S. Typhimurium type 1 fimbriae are characterized by mannose-sensitive hemagglutination and are assembled via the chaperone/usher pathway.S. Typhimurium type 1 fimbrial proteins are encoded by thefimgene cluster (fimAICDHFZYW), withfimAICDHFexpressed as a single transcriptional unit. The structural components of the fimbriae are FimA (major subunit), FimI, FimH (adhesin), and FimF (adaptor). In order to determine which components are required for fimbrial formation inS. Typhimurium, mutations infimA,fimI,fimH, andfimFwere constructed and examined for their ability to produce surface-assembled fimbriae.S. Typhimurium SL1344ΔfimA, -ΔfimH, and -ΔfimFmutants were unable to assemble fimbriae, indicating that these genes are necessary for fimbrial production inS. Typhimurium. However, SL1344ΔfimIwas able to assemble fimbriae. InEscherichia colitype 1 and Pap fimbriae, at least two adaptors are expressed in addition to the adhesins. However,E. colitype 1 and Pap fimbriae have been reported to be able to assemble fimbriae in the absence of these proteins. These results suggest differences between theS. Typhimurium type 1 fimbrial system and theE. colitype 1 and Pap fimbrial systems.


Sign in / Sign up

Export Citation Format

Share Document