scholarly journals The 3' Terminal RNA Sequences of Bunyaviruses and Nairoviruses (Bunyaviridae): Evidence of End Sequence Generic Differences within the Virus Family

1982 ◽  
Vol 61 (2) ◽  
pp. 289-292 ◽  
Author(s):  
C. M. Clerx-van Haaster ◽  
J. P. M. Clerx ◽  
H. Ushijima ◽  
H. Akashi ◽  
F. Fuller ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Guennadi Kouzaev

In this message, the complete RNA sequences (GISAID) of Omicron (BA.1 and BA.2) SARS CoV-2 viruses are studied using the genomic ATG-walks. These walks are compared visually and numerically with a reference RNA (Wuhan, China, 2020), and the deviation levels are estimated. Statistical characteristics of these distributions are compared, including the fractal dimension values of coding-word length distributions. Most of the 17 RNA ATG walks studied here show relatively small deviations of their characteristics and resistance to forming a new virus family.


2008 ◽  
Vol 89 (10) ◽  
pp. 2580-2585 ◽  
Author(s):  
Amy J. Lambert ◽  
Robert S. Lanciotti

We have characterized the full-length S segment RNA sequences of five human pathogens of the virus family Bunyaviridae, genus Orthobunyavirus. S segment sequences of Fort Sherman, Shokwe and Xingu viruses of the Bunyamwera serogroup, as well as those of Bwamba and Pongola viruses of the Bwamba serogroup, are described. S segment sequences of Bwamba and Pongola viruses represent the first nucleotide sequences characterized for viruses of the Bwamba serogroup. The described molecular and phylogenetic analyses of these and other selected viruses of the genus Orthobunyavirus reveal that a close sequence similarity is shared between the African Bwamba and the predominantly North American and European California serogroups of the genus Orthobunyavirus.


Author(s):  
B.A. Hamkalo ◽  
S. Narayanswami ◽  
A.P. Kausch

The availability of nonradioactive methods to label nucleic acids an the resultant rapid and greater sensitivity of detection has catapulted the technique of in situ hybridization to become the method of choice to locate of specific DNA and RNA sequences on chromosomes and in whole cells in cytological preparations in many areas of biology. It is being applied to problems of fundamental interest to basic cell and molecular biologists such as the organization of the interphase nucleus in the context of putative functional domains; it is making major contributions to genome mapping efforts; and it is being applied to the analysis of clinical specimens. Although fluorescence detection of nucleic acid hybrids is routinely used, certain questions require greater resolution. For example, very closely linked sequences may not be separable using fluorescence; the precise location of sequences with respect to chromosome structures may be below the resolution of light microscopy(LM); and the relative positions of sequences on very small chromosomes may not be feasible.


2011 ◽  
Vol 152 (16) ◽  
pp. 633-641 ◽  
Author(s):  
Katalin Gőcze ◽  
Katalin Gombos ◽  
Gábor Pajkos ◽  
Ingrid Magda ◽  
Ágoston Ember ◽  
...  

Cancer research concerning short non-coding RNA sequences and functionally linked to RNA interference (RNAi) have reached explosive breakthrough in the past decade. Molecular technology applies microRNA in extremely wide spectrum from molecular tumor prediction, diagnostics, progression monitoring and prevention. Functional analysis of tissue miRNA and cell-free serum miRNA in posttranscription and translation regulation innovated and restructured the knowledge on the field. This review focuses on molecular epidemiology and primary prevention aspects of the small non-coding RNA sequences. Orv. Hetil., 2011, 152, 633–641.


Author(s):  
Rami Obeid ◽  
Elias Wehbe ◽  
Mohamad Rima ◽  
Mohammad Kabara ◽  
Romeo Al Bersaoui ◽  
...  

Background: Tobacco mosaic virus (TMV) is the most known virus in the plant mosaic virus family and is able to infect a wide range of crops, in particularly tobacco, causing a production loss. Objectives: Herein, and for the first time in Lebanon, we investigated the presence of TMV infection in crops by analyzing 88 samples of tobacco, tomato, cucumber and pepper collected from different regions in North Lebanon. Methods: Double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), revealed a potential TMV infection of four tobacco samples out of 88 crops samples collected. However, no tomato, cucumber and pepper samples were infected. The TMV+ tobacco samples were then extensively analyzed by RT-PCR to detect viral RNA using different primers covering all the viral genome. Results and Discussion: PCR results confirmed those of DAS-ELISA showing TMV infection of four tobacco samples collected from three crop fields of North Lebanon. In only one of four TMV+ samples, we were able to amplify almost all the regions of viral genome, suggesting possible mutations in the virus genome or an infection with a new, not yet identified, TMV strain. Conclusion: Our study is the first in Lebanon revealing TMV infection in crop fields, and highlighting the danger that may affect the future of agriculture.


Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Poonam B ◽  
Prabhjot Kaur Gill

Background: The positive sense and inordinate large RNA genome are enclosed by helical nuceocapsids along with an outermost layer belongs to the family Coronaviridae. The phylogenetic tree of this family has been quartered into Class1 as alpha, Class 2 as beta, Class 3 as gamma and Class 4 as delta CoV. The mammalian respiratory and gastrointestinal tracts are the main target organs of this enveloped virus with misperceived mechanisms. The relevance of this virus family has considerably increased by the dint of recent emergence of the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), which are caused by viruses belonging to the beta-CoV group. Aim: Aforesaid illustrations of emergence of coronavirus diseases over the past two decades, SARS (2002 and 2003) and MERS (2012 to present) - the ongoing COVID-19 outbreak has pressurized the WHO to take innovative measures for public health, research and medical communities. The aim of the present review is to have proficiency in coronavirus replication and transcription process which is still in its infancy. Conclusion: An outcome of epidemics, it is being recognized as one of the most advancing viruses by the virtue of high genomic nucleotide substitution rates and recombination. The hallmark of coronavirus replication is discontinuous transcription resulting in the production of multiple subgenomic mRNAs having sequences complementary to both ends of the genome. Therefore, complete genome sequence of coronavirus will be used as frame of reference for knowing this classical phenomenon of RNA replication process. Finally, research on the pathogenesis of coronaviruses and the host immunopathological response will aid in designing vaccines and minimizing mortality rate.


1990 ◽  
Vol 64 (5) ◽  
pp. 2064-2072 ◽  
Author(s):  
J M Almendral ◽  
F Almazán ◽  
R Blasco ◽  
E Viñuela

2006 ◽  
Vol 11 (3) ◽  
pp. 236-246 ◽  
Author(s):  
Laurence H. Lamarcq ◽  
Bradley J. Scherer ◽  
Michael L. Phelan ◽  
Nikolai N. Kalnine ◽  
Yen H. Nguyen ◽  
...  

A method for high-throughput cloning and analysis of short hairpin RNAs (shRNAs) is described. Using this approach, 464 shRNAs against 116 different genes were screened for knockdown efficacy, enabling rapid identification of effective shRNAs against 74 genes. Statistical analysis of the effects of various criteria on the activity of the shRNAs confirmed that some of the rules thought to govern small interfering RNA (siRNA) activity also apply to shRNAs. These include moderate GC content, absence of internal hairpins, and asymmetric thermal stability. However, the authors did not find strong support for positionspecific rules. In addition, analysis of the data suggests that not all genes are equally susceptible to RNAinterference (RNAi).


Sign in / Sign up

Export Citation Format

Share Document