scholarly journals Stable genetic integration of a red fluorescent protein in a virulent Group A Streptococcus strain

2019 ◽  
Vol 1 (9) ◽  
Author(s):  
Zhong Liang ◽  
Katelyn Carothers ◽  
Adam Holmes ◽  
Deborah Donahue ◽  
Shaun W. Lee ◽  
...  
2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2020 ◽  
pp. 64-70
Author(s):  
Anastasiya Laknitskaya

Currently, one of the priority medical and social problems is the optimization of treatment methods for pyoderma associated with Streptococcus pyogenes — group A streptococcus (GAS). To date, the proportion of pyoderma, the etiological factor of which is Streptococcus pyogenes, is about 6 % of all skin diseases and is in the range from 17.9 to 43.9 % of all dermatoses. Role of the bacterial factor in the development of streptococcal pyoderma is obvious. Traditional treatment complex includes antibacterial drugs selected individually, taking into account the antibiotic sensitivity of pathognomonic bacteria, and it is not always effective. Currently implemented immunocorrection methods often do not take into account specific immunological features of the disease, the individual, and the fact that the skin performs the function of not only a mechanical barrier, but it is also an immunocompetent organ. Such an approach makes it necessary to conduct additional studies clarifying the role of factors of innate and adaptive immunity, intercellular mediators and antioxidant defense system, that allow to optimize the treatment of this pathology.


Sign in / Sign up

Export Citation Format

Share Document