Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring

2010 ◽  
Vol 60 (12) ◽  
pp. 2832-2837 ◽  
Author(s):  
Ksenia Lavrinenko ◽  
Elena Chernousova ◽  
Elena Gridneva ◽  
Galina Dubinina ◽  
Vladimir Akimov ◽  
...  

A novel nitrogen-fixing strain, designated BV-ST, was isolated from a sulfur bacterial mat collected from a sulfide spring of the Stavropol Krai, North Caucasus, Russia. Strain BV-ST grew optimally at pH 7.5 and 37 °C. According to the results of phylogenetic analysis, strain BV-ST belonged to the genus Azospirillum within the family Rhodospirillaceae of the class Alphaproteobacteria. Within the genus Azospirillum, strain BV-ST was most closely related to Azospirillum doebereinerae GSF71T, A. picis IMMIB TAR-3T and A. lipoferum ATCC 29707T (97.7, 97.7 and 97.4 % 16S rRNA gene sequence similarity, respectively). DNA–DNA relatedness between strain BV-ST and A. doebereinerae DSM 13131T, A. picis DSM 19922T and A. lipoferum ATCC 29707T was 38, 55 and 42 %, respectively. Similarities between nifH sequences of strain BV-ST and members of the genus Azospirillum ranged from 94.5 to 96.8 %. Chemotaxonomic characteristics (quinone Q-10, major fatty acid C18 : 1 ω7c and G+C content 67 mol%) were similar to those of members of the genus Azospirillum. In contrast to known Azospirillum species, strain BV-ST was capable of mixotrophic growth under microaerobic conditions with simultaneous utilization of organic substrates and thiosulfate as electron donors for energy conservation. Oxidation of sulfide was accompanied by deposits of sulfur globules within the cells. Based on these observations, strain BV-ST is considered as a representative of a novel species of the genus Azospirillum, for which the name Azospirillum thiophilum sp. nov. is proposed. The type strain is BV-ST (=DSM 21654T =VKM B-2513T).

2007 ◽  
Vol 57 (8) ◽  
pp. 1788-1792 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh

A Gram-negative, non-motile and rod-, oval- or coccoid-shaped bacterial strain, DSW-25T, which is phylogenetically closely related to the genera Staleya and Sulfitobacter, was isolated from seawater of the East Sea, Korea, and subjected to a polyphasic taxonomic study. Strain DSW-25T grew optimally at pH 7.0–8.0 and at 25 °C. It contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. Major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The DNA G+C content was 56.9 mol%. Strain DSW-25T exhibited 16S rRNA gene sequence similarity values of 98.4 % to the type strain of Staleya guttiformis and of 96.6–97.6 % to Sulfitobacter species. There were no distinct phenotypic, particularly chemotaxonomic, properties to differentiate Staleya guttiformis and strain DSW-25T from the genus Sulfitobacter. DNA–DNA relatedness data and differential phenotypic properties, together with the phylogenetic distinctiveness, demonstrated that strain DSW-25T differs from recognized Sulfitobacter species and Staleya guttiformis. On the basis of phenotypic, chemotaxonomic, phylogenetic and genetic data, strain DSW-25T was classified in the genus Sulfitobacter as a member of a novel species, for which the name Sulfitobacter donghicola sp. nov. is proposed. The type strain is strain DSW-25T (=KCTC 12864T =JCM 14565T). It is also proposed that Staleya guttiformis be transferred to the genus Sulfitobacter as Sulfitobacter guttiformis comb. nov.


2006 ◽  
Vol 56 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

Four Gram-negative, orange-coloured, aerobic, heterotrophic bacteria were isolated from sediment samples collected on the Pacific coast of Japan near the cities of Toyohashi and Katsuura. 16S rRNA gene sequence analysis indicated that these strains form a distinct lineage within the family Flavobacteriaceae. The four isolates shared 99.9–100 % 16S rRNA gene sequence similarity with each other and showed 88–90.9 % similarity with their neighbours in the family Flavobacteriaceae. The four strains also shared high DNA–DNA reassociation values of 67–99 % with each other. All the strains grew at 37 °C but not at 4 °C, and degraded gelatin, starch and DNA. The major fatty acids were i-C15 : 0, a-C15 : 0, i-C16 : 0 and i-C17 : 0 3-OH. However, two common fatty acids of members of the Flavobacteriaceae, i-C15 : 1 and a-C15 : 1, were absent in these strains. The DNA G+C contents of the four strains were in the range 35–37 mol%. On the basis of the polyphasic evidence, it was concluded that these strains should be classified as a novel genus and a novel species in the family Flavobacteriaceae, for which the name Sandarakinotalea sediminis gen. nov., sp. nov. is proposed. The type strain of Sandarakinotalea sediminis is CKA-5T (=NBRC 100970T=LMG 23247T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2357-2364 ◽  
Author(s):  
Nupur ◽  
Naga Radha Srinivas Tanuku ◽  
Takaichi Shinichi ◽  
Anil Kumar Pinnaka

A novel brown-coloured, Gram-negative-staining, rod-shaped, motile, phototrophic, purple sulfur bacterium, designated strain AK40T, was isolated in pure culture from a sediment sample collected from Coringa mangrove forest, India. Strain AK40T contained bacteriochlorophyll a and carotenoids of the rhodopin series as major photosynthetic pigments. Strain AK40T was able to grow photoheterotrophically and could utilize a number of organic substrates. It was unable to grow photoautotrophically and did not utilize sulfide or thiosulfate as electron donors. Thiamine and riboflavin were required for growth. The dominant fatty acids were C12 : 0, C16 : 0, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The polar lipid profile of strain AK40T was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and eight unidentified lipids. Q-10 was the predominant respiratory quinone. The DNA G+C content of strain AK40T was 65.5 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represented a member of the family Chromatiaceae within the class Gammaproteobacteria. 16S rRNA gene sequence analysis indicated that strain AK40T was closely related to Phaeochromatium fluminis, with 95.2 % pairwise sequence similarity to the type strain; sequence similarity to strains of other species of the family was 90.8–94.8 %. Based on the sequence comparison data, strain AK40T was positioned distinctly outside the group formed by the genera Phaeochromatium, Marichromatium, Halochromatium, Thiohalocapsa, Rhabdochromatium and Thiorhodovibrio. Distinct morphological, physiological and genotypic differences from previously described taxa supported the classification of this isolate as a representative of a novel species in a new genus, for which the name Phaeobacterium nitratireducens gen. nov., sp. nov. is proposed. The type strain of Phaeobacterium nitratireducens is AK40T ( = JCM 19219T = MTCC 11824T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 501-505 ◽  
Author(s):  
Jonathan Kennedy ◽  
Lekha Menon Margassery ◽  
Niall D. O’Leary ◽  
Fergal O’Gara ◽  
John Morrissey ◽  
...  

A Gram-stain-negative, rod-shaped, orange-coloured, catalase- and oxidase-positive, non-motile bacterium, designated strain 92VT, was isolated from the marine sponge Amphilectus fucorum, collected from Lough Hyne, County Cork, Ireland. 16S rRNA gene sequence analysis revealed that strain 92VT clustered with members of the family Flavobacteriaceae , the closest member being Aquimarina latercula NCIMB 1399T, with a gene sequence similarity of 97.5 %. Strain 92VT required seawater for growth with optimal growth occurring at 25 °C, at pH 6–7 and with 3 % (w/v) NaCl. MK-6 was the sole respiratory quinone present and the major fatty acids were iso-C17 : 0 3-OH, iso-C15 : 0, iso-C17 : 1ω9c and iso-C15 : 0 3-OH. The DNA G+C content was 36.1 mol%. Combined phenotypic differences and phylogenetic analysis indicate that strain 92VT represents a novel species of the genus Aquimarina , for which the name Aquimarina amphilecti sp. nov. is proposed. The type strain is 92VT ( = NCIMB 14723T = DSM 25232T).


2006 ◽  
Vol 56 (4) ◽  
pp. 841-845 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

The taxonomic position of four Gram-negative, rod-shaped, golden-yellow-coloured bacteria isolated from marine sediments was determined. Analysis of the almost complete 16S rRNA gene sequences indicated that these isolates belong to the family Flavobacteriaceae. An unclassified bacterium, NBRC 15975, was found to be the closest relative, showing 16S rRNA gene sequence similarity of 93 %; other related genera shared only 87·9–90·5 % similarity. In contrast, the four isolates shared high levels of 16S rRNA gene sequence similarity (99·3–99·7 %) and high DNA–DNA reassociation values (93–104 %). The isolates could be differentiated phenotypically from other genera by the abilities to reduce nitrate and to degrade gelatin, casein and starch. The only respiratory quinone was MK-6, and the major fatty acids were iso-C15 : 0, iso-C15 : 1, anteiso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH. The DNA G+C content was 38–40 mol%. Differentiating phenotypic characteristics and large phylogenetic distances between the isolates and previously published genera indicated that the isolates constitute a novel genus, for which the name Sediminicola gen. nov. is proposed. The type species is Sediminicola luteus sp. nov. (type strain CNI-3T=NBRC 100966T=LMG 23246T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2238-2246 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
Vânia Figueira ◽  
Ana R. Lopes ◽  
Evie De Brandt ◽  
Peter Vandamme ◽  
...  

Two bacterial strains (SC-089T and SC-092T) isolated from sewage sludge compost were characterized by using a polyphasic approach. The isolates were Gram-negative short rods, catalase- and oxidase-positive, and showed good growth at 30 °C, at pH 7 and with 1 % (w/v) NaCl. Ubiquinone 8 was the major respiratory quinone, and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol were amongst the major polar lipids. On the basis of 16S rRNA gene sequence analysis, the strains were observed to be members of the family Alcaligenaceae, but could not be identified as members of any validly described genus. The low levels of 16S rRNA gene sequence similarity to other recognized taxa, together with comparative analysis of phenotypic traits and chemotaxonomic markers, supported the proposal of a new genus within the family Alcaligenaceae, for which the name Candidimonas gen. nov. is proposed. Strains SC-089T and SC-092T, which shared 99.1 % 16S rRNA gene sequence similarity, could be differentiated at the phenotypic level, and DNA–DNA hybridization results supported their identification as representing distinct species. The names proposed for these novel species are Candidimonas nitroreducens sp. nov. (type strain, SC-089T = LMG 24812T = CCUG 55806T) and Candidimonas humi sp. nov. (type strain, SC-092T = LMG 24813T = CCUG 55807T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2677-2681 ◽  
Author(s):  
Leonid N. Ten ◽  
Sang-Hoon Baek ◽  
Wan-Taek Im ◽  
Myungjin Lee ◽  
Hyun Woo Oh ◽  
...  

A Gram-positive, facultatively anaerobic, motile, spore-forming bacterium, designated Gsoil 1411T, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that strain Gsoil 1411T belongs to the family Paenibacillaceae, with closest sequence similarity to the type strains of Paenibacillus xylanilyticus (95.7 %), Paenibacillus illinoisensis (95.2 %) and Paenibacillus pabuli (94.8 %). Strain Gsoil 1411T showed less than 94 % sequence similarity to the type strains of other recognized members of the genus Paenibacillus. In addition, the presence of MK-7 as the major menaquinone, anteiso-C15 : 0 as a major fatty acid (44.8 %) and the presence of PAEN513F and PAEN862F signature sequences suggest that it is affiliated to the genus Paenibacillus. The G+C content of the genomic DNA was 53.9 mol%. On the basis of its phenotypic characteristics and phylogenetic distinctiveness, strain Gsoil 1411T is suggested to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus panacisoli sp. nov. is proposed. The type strain is Gsoil 1411T (=KCTC 13020T=LMG 23405T).


2010 ◽  
Vol 60 (1) ◽  
pp. 196-199 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh

A Gram-negative, non-motile and pleomorphic bacterial strain, SMK-114T, which belongs to the class Alphaproteobacteria, was isolated from a tidal flat sample collected in Byunsan, Korea. Strain SMK-114T grew optimally at pH 7.0–8.0 and 25–30 °C and in the presence of 2 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain SMK-114T formed a cluster with Octadecabacter species, with which it exhibited 16S rRNA gene sequence similarity values of 95.2–95.4 %. This cluster was part of the clade comprising Thalassobius species with a bootstrap resampling value of 76.3 %. Strain SMK-114T exhibited 16S rRNA gene sequence similarity values of 95.1–96.3 % to members of the genus Thalassobius. It contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. The DNA G+C content was 60.0 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain SMK-114T is considered to represent a novel species in a new genus for which the name Gaetbulicola byunsanensis gen. nov., sp. nov. is proposed. The type strain of Gaetbulicola byunsanensis is SMK-114T (=KCTC 22632T =CCUG 57612T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1535-1538 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
M. Fernanda Nobre ◽  
Olga C. Nunes ◽  
Célia M. Manaia

A bacterial strain, DC-186T, isolated from home-made compost, was characterized for its phenotypic and phylogenetic properties. The isolate was a Gram-negative rod that was able to grow at 15–36 °C and pH 5.5–8.0. Strain DC-186T was positive in tests for catalase, oxidase and β-galactosidase activities and aesculin hydrolysis. The predominant fatty acids were the summed feature C16 : 1/iso-C15 : 0 2-OH (42 %) and iso-C15 : 0 (26 %), the major respiratory quinone was menaquinone-7 and the genomic DNA G+C content was 42 mol%. 16S rRNA gene sequence analysis and phenetic characterization indicated that this organism belongs to the phylum Bacteroidetes and revealed its affiliation to the family Sphingobacteriaceae. Of recognized taxa, strain DC-186T was most closely related to Sphingobacterium daejeonense (90 % sequence similarity) based on 16S rRNA gene sequence analysis. The low 16S rRNA gene sequence similarity with other recognized taxa and the identification of distinctive phenetic features for this isolate support the definition of a new genus within the family Sphingobacteriaceae. The name Pseudosphingobacterium domesticum gen. nov., sp. nov. is proposed, with strain DC-186T (=CCUG 54353T=LMG 23837T) as the type strain.


2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document