scholarly journals Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment

2011 ◽  
Vol 61 (12) ◽  
pp. 2956-2961 ◽  
Author(s):  
Mitsufumi Matsumoto ◽  
Daisuke Iwama ◽  
Atsushi Arakaki ◽  
Akira Tanaka ◽  
Tsuyoshi Tanaka ◽  
...  

A Gram-negative, non-motile, non-spore-forming, halophilic rod, designated JPCCMB0017T, was isolated from a marine sediment of the coastal area of Okinawa, Japan. The isolate formed orange–red colonies on marine agar. Bacteriochlorophyll α was absent and sphingoglycolipid 1 and other carotenoids, including astaxanthin, adonixanthin and zeaxanthin, were present. Ubiquinone-10 (Q-10) was the main respiratory quinone and C18 : 1ω7c was the major cellular fatty acid. The G+C content of DNA was 59.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the isolate was a member of the genus Altererythrobacter in the family Erythrobacteraceae. Strain JPCCMB0017T exhibited 96.8 % 16S rRNA gene sequence similarity with Altererythrobacter marinus H32T. Unlike other members of the genus Altererythrobacter, strain JPCCMB0017T reduced nitrate. On the basis of genotypic and phenotypic data, a novel species is proposed to accommodate this isolate, with the name Altererythrobacter ishigakiensis sp. nov. The type strain is JPCCMB0017T ( = NITE-AP48T = ATCC BAA-2084T = NBRC 107699T).

2010 ◽  
Vol 60 (4) ◽  
pp. 928-931 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Marc Vancanneyt ◽  
Seung Bum Kim

A bacterial strain, designated KMM 6177T, was isolated from the sea urchin Strongylocentrotus intermedius and subjected to a polyphasic taxonomic investigation. The bacterium was found to be heterotrophic, aerobic, non-motile by gliding and orange-pigmented. Comparative phylogenetic analysis based on 16S rRNA gene sequencing placed the marine isolate in the genus Bizionia, a member of the family Flavobacteriaceae, with 16S rRNA gene sequence similarity of 94.9–98.6 % with recognized Bizionia species. Strain KMM 6177T grew at 4–39 °C and with 1–8 % NaCl. It produced alkaline phosphatase, catalase and oxidase and hydrolysed aesculin, gelatin, DNA and Tween 20. The predominant fatty acids were iso-C15 : 1, iso-C15 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH and a summed feature (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c). The DNA G+C content was 34.4 mol%. A combination of phylogenetic, genotypic and phenotypic data clearly indicated that strain KMM 6177T represents a novel species in the genus Bizionia, for which the name Bizionia echini sp. nov. is proposed. The type strain is KMM 6177T (=KCTC 22015T=LMG 25220T).


2004 ◽  
Vol 54 (5) ◽  
pp. 1717-1721 ◽  
Author(s):  
M. Grazia Fortina ◽  
G. Ricci ◽  
D. Mora ◽  
P. L. Manachini

The taxonomic positions of seven atypical Enterococcus strains, isolated from artisanal Italian cheeses, were investigated in a polyphasic study. By using 16S rRNA gene sequencing, DNA–DNA hybridization and intergenic transcribed spacer analysis, as well as by examining the phenotypic properties, the novel isolates were shown to constitute a novel enterococcal species. Their closest relatives are Enterococcus sulfureus and Enterococcus saccharolyticus, having a 16S rRNA gene sequence similarity of 96·7 %. This group of strains can be easily differentiated from the other Enterococcus species by DNA–DNA hybridization and by their phenotypic characteristics: the strains do not grow in 6·5 % NaCl, and they do not produce acid from l-arabinose, melezitose, melibiose, raffinose or ribose. The name Enterococcus italicus sp. nov. is proposed for this species, with strain DSM 15952T (=LMG 22039T) as the type strain.


2010 ◽  
Vol 60 (7) ◽  
pp. 1637-1639 ◽  
Author(s):  
Kazuko Takada ◽  
Kazuhiko Hayashi ◽  
Yutaka Sato ◽  
Masatomo Hirasawa

Four strains (NUM 1903T, NUM 1904, NUM 1912 and NUM 1925) that were obligately anaerobic, pigmented, Gram-negative-staining rods were isolated from the oral cavity of donkeys. These strains were analysed using the Rapid ID 32A, API 20A and API ZYM systems, by DNA–DNA hybridization with other related species and by 16S rRNA gene sequencing. 16S rRNA gene sequence analysis showed that each of the new isolates was a member of the genus Prevotella and related to Prevotella multiformis PPPA21T, showing about 93 % sequence similarity. Based on phylogenetic and phenotypic evidence, it is proposed that the four strains are representatives of a novel species, for which the name Prevotella dentasini sp. nov. is proposed. The type strain is NUM 1903T (=JCM 15908T=DSM 22229T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1045-1050 ◽  
Author(s):  
Ying Xu ◽  
Xin-Peng Tian ◽  
Yu-Juan Liu ◽  
Jie Li ◽  
Chang-Jin Kim ◽  
...  

A marine bacterium, designated SCSIO 03483T, was isolated from a marine sediment sample collected from the Nansha Islands in the South China Sea. The strain produced roundish colonies with diffusible yellow-coloured pigment on nutrient agar medium or marine agar 2216. Optimal growth occurred in the presence of 0–4 % (w/v) NaCl, at pH 7.0 and a temperature range of 28–37 °C. 16S rRNA gene sequence analysis indicated that the isolate belonged to the family Flavobacteriaceae and showed relatively high sequence similarity with Imtechella halotolerans K1T (92.7 %). Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that the isolate shared a lineage with members of the genera Imtechella , Joostella and Zhouia . Phospholipids were phosphatidylethanolamine, two unidentified aminolipids and three unknown polar lipids. The major respiratory quinone was MK-6 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω6c/C16 : 1ω7c). The DNA G+C content of strain SCSIO 03483T was 38.4 mol%. On the basis of phenotypic, chemotaxonomic and molecular data, strain SCSIO 03483T represents a novel species in a new genus in the family Flavobacteriaceae , for which the name Sinomicrobium oceani gen. nov., sp. nov. is proposed. The type strain of Sinobacterium oceani is SCSIO 03483T ( = KCTC 23994T = CGMCC 1.12145T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2199-2202 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Hee Yoo ◽  
Jong-Shik Kim ◽  
Soon-Wo Kwon ◽  
...  

A bacterial strain, GA2-M3T, isolated from a sea-sand sample in Korea, was subjected to polyphasic taxonomic characterization. Cells of strain GA2-M3T were Gram-negative, non-motile, non-spore-forming and short rod- to ovoid-shaped. Comparative 16S rRNA gene sequencing studies confirmed that the bacterium fell within the radiation of the genus Loktanella. Similarity levels between the 16S rRNA gene sequence of strain GA2-M3T and those of type strains of Loktanella species with validly published names were 93.5–96.1 %; highest sequence similarity was with Loktanella rosea. The G+C content of the genomic DNA of strain GA2-M3T was 60.0 mol% and the predominant ubiquinone was Q-10. Major fatty acids were 18 : 1ω7c, 18 : 0 and 18 : 1ω7c 11-methyl. On the basis of the evidence presented, it is proposed that strain GA2-M3T represents a novel species, for which the name Loktanella koreensis sp. nov. is proposed. The type strain is GA2-M3T (=KACC 11519T=DSM 17925T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2278-2283 ◽  
Author(s):  
Peter Kämpfer ◽  
Bettina Huber ◽  
Hans-Jürgen Busse ◽  
Holger C. Scholz ◽  
Herbert Tomaso ◽  
...  

Two Gram-negative, rod-shaped, non-spore-forming strains, designated 08RB2639T and 08RB2781-1, were isolated from a sheep (Ovis aries) and a domestic boar (Sus scrofa domestica), respectively. By 16S rRNA gene sequencing, the isolates revealed identical sequences and were shown to belong to the Alphaproteobacteria. They exhibited 97.8 % 16S rRNA gene sequence similarity with Ochrobactrum rhizosphaerae PR17T, O. pituitosum CCUG 50899T, O. tritici SCII24T and O. haematophilum CCUG 38531T and 97.4 % sequence similarity with O. cytisi ESC1T, O. anthropi LMG 3331T and O. lupini LUP21T. The recA gene sequences of the two isolates showed only minor differences (99.5 % recA sequence similarity), and strain 08RB2639T exhibited the highest recA sequence similarity with Ochrobactrum intermedium CCUG 24694T (91.3 %). The quinone system was ubiquinone Q-10, with minor amounts of Q-9 and Q-11, the major polyamines were spermidine, putrescine and sym-homospermidine and the major lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine, with moderate amounts of the Ochrobactrum-specific unidentified aminolipid AL2. The major fatty acids (>20 %) were C18 : 1ω7c and C19 : 0 cyclo ω8c. These traits were in excellent agreement with the assignment of the isolates to the genus Ochrobactrum. DNA–DNA relatedness and physiological and biochemical tests allowed genotypic and phenotypic differentiation from other members of the genus Ochrobactrum. Hence, it is concluded that the isolates represent a novel species, for which the name Ochrobactrum pecoris sp. nov. is proposed (type strain 08RB2639T  = DSM 23868T  = CCUG 60088T  = CCM 7822T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1552-1557 ◽  
Author(s):  
Na-Ri Shin ◽  
Tae Woong Whon ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
Young-Ok Kim ◽  
...  

Two strains, designated TW92T and TW93, were isolated from marine sediment collected from the south coast of Korea. Cells of both strains were Gram-staining-negative, coccus-shaped, aerobic, motile and catalase- and oxidase-positive. Strain TW92T grew optimally in the presence of 2 % (w/v) NaCl (range 1–5 %) while strain TW93 grew optimally in the presence of 1 % (w/v) NaCl (range 0–12 %), and both strains had an optimal growth temperature of 30 °C (range 4–37 °C). Strains TW92T and TW93 had the same optimum pH (pH 7), but differed in their ability to grow at pH 10. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strains TW92T and TW93 were most closely related to Oceanisphaera donghaensis BL1T, with 98.8 % and 98.7 % similarity, respectively. Pairwise similarity between the 16S rRNA gene sequences of strains TW92T and TW93 was 99.9 %. The major fatty acids of both strains were summed features 3 (comprising C16 : 1ω7c/iso-C15 2-OH), C16 : 0 and C18 : 1ω7c. Both strains possessed the ubiquinone Q-8 as the predominant respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the polar lipids. The genomic DNA G+C contents of strains TW92T and TW93 were 58.5 and 59.6 mol%, respectively. Genomic relatedness values based on DNA–DNA hybridization of strains TW92T and TW93 with related species were below 47 % and 31 %, respectively. DNA–DNA hybridization values between strains TW92T and TW93 were above 85 %. On the basis of a taxonomic study using polyphasic analysis, it is proposed that the two isolates represent a novel species, Oceanisphaera sediminis sp. nov., with strain TW92T ( = KACC 15117T = JCM 17329T) as the type strain and strain TW93 ( = KACC 15118 = JCM 17330) as an additional strain.


2019 ◽  
Vol 113 (3) ◽  
pp. 365-375 ◽  
Author(s):  
Ye Zhuo ◽  
Chun-Zhi Jin ◽  
Feng-Jie Jin ◽  
Taihua Li ◽  
Dong Hyo Kang ◽  
...  

Abstract A novel Gram-stain-positive bacterial strain, CHu50b-6-2T, was isolated from a 67-cm-long sediment core collected from the Daechung Reservoir at a water depth of 17 m, Daejeon, Republic of Korea. The cells of strain CHu50b-6-2T were aerobic non-motile and formed yellow colonies on R2A agar. The phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain formed a separate lineage within the family Microbacteriaceae, exhibiting 98.0%, 97.7% and 97.6% 16S rRNA gene sequence similarities to Glaciihabitans tibetensis KCTC 29148T, Frigoribacterium faeni KACC 20509T and Lysinibacter cavernae DSM 27960T, respectively. The phylogenetic trees revealed that strain CHu50b-6-2T did not show a clear affiliation to any genus within the family Microbacteriaceae. The chemotaxonomic results showed B1α type peptidoglacan containg 2, 4-diaminobutyric acid (DAB) as the diagnostic diamino acid, MK-10 as the predominant respiratory menaquinone, diphosphatidylglycerol, phosphatidylglycerol, and an unidentified glycolipid as the major polar lipids, anteiso-C15:0, iso-C16:0, and anteiso-C17:0 as the major fatty acids, and a DNA G + C content of 67.3 mol%. The combined genotypic and phenotypic data showed that strain CHu50b-6-2T could be distinguished from all genera within the family Microbacteriaceae and represents a novel genus, Lacisediminihabitans gen. nov., with the name Lacisediminihabitans profunda sp. nov., in the family Microbacteriaceae. The type strain is CHu50b-6-2T (= KCTC 49081T = JCM 32673T).


2011 ◽  
Vol 61 (1) ◽  
pp. 105-109 ◽  
Author(s):  
Geun Cheol Song ◽  
Muhammad Yasir ◽  
Fehmida Bibi ◽  
Eu Jin Chung ◽  
Che Ok Jeon ◽  
...  

A Gram-staining-positive, coccoid to rod-shaped bacterium, designated strain YC6903T, was isolated from a halophytic plant (Carex scabrifolia Steud.) collected from sand dunes at Namhae Island, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain YC6903T grew optimally at 30 °C and at pH 8.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC6903T belongs to the genus Nocardioides in the family Nocardioidaceae. Strain YC6903T was related most closely to Nocardioides pyridinolyticus OS4T (97.0 % 16S rRNA gene sequence similarity), Nocardioides dokdonensis FR1436T (96.6 %), Nocardioides aquiterrae GW-9T (96.6 %) and Nocardioides hankookensis DS-30T (96.6 %). The cell-wall peptidoglycan contained ll-diaminopimelic acid and MK-8(H4) was the major respiratory quinone. The mean (±sd) level of DNA–DNA relatedness between strain YC6903T and N. pyridinolyticus OS4T was 53.5±5.5 %. The predominant cellular fatty acid of strain YC6903T was iso-C16 : 0 (28.9 %). The DNA G+C content was 71.7 mol%. Phenotypic, phylogenetic and chemotaxonomic data indicated that strain YC6903T represents a novel species of the genus Nocardioides, for which the name Nocardioides caricicola sp. nov. is proposed. The type strain is YC6903T (=KACC 13778T =DSM 22177T).


Sign in / Sign up

Export Citation Format

Share Document