scholarly journals Vibrio gallicus sp. nov., isolated from the gut of the French abalone Haliotis tuberculata

2004 ◽  
Vol 54 (3) ◽  
pp. 843-846 ◽  
Author(s):  
Tomoo Sawabe ◽  
Karin Hayashi ◽  
Jun Moriwaki ◽  
Fabiano L. Thompson ◽  
Jean Swings ◽  
...  

Five alginolytic, facultatively anaerobic, non-motile bacteria were isolated from the gut of the abalone Haliotis tuberculata. Phylogenetic analyses based on 16S rDNA data indicated that these strains are related to Vibrio wodanis, Vibrio salmonicida, Vibrio logei and Vibrio fischeri (but with <97 % 16S rRNA gene sequence similarity). DNA–DNA hybridization and fluorescence amplified fragment length polymorphism fingerprinting demonstrated that the five strains constituted a single species that was different from all currently known vibrios. The name Vibrio gallicus sp. nov. (type strain, CIP 107863T=LMG 21878T=HT2-1T; DNA G+C content, 43·6–44·3 mol%) is proposed for this novel taxon. Several phenotypic features were disclosed that discriminated V. gallicus from other Vibrio species: V. gallicus can be differentiated from Vibrio halioticoli on the basis of four traits (β-galactosidase test and assimilation of three carbon compounds) and from Vibrio superstes by 16 traits.

2005 ◽  
Vol 55 (1) ◽  
pp. 423-426 ◽  
Author(s):  
Chiu-Chung Young ◽  
Peter Kämpfer ◽  
Fo-Ting Shen ◽  
Wei-An Lai ◽  
A. B. Arun

A yellow-pigmented bacterial strain (CC-H3-2T), isolated from the rhizosphere of Lactuca sativa L. (garden lettuce) in Taiwan, was investigated using a polyphasic taxonomic approach. The cells were Gram-negative, rod-shaped and non-spore-forming. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Chryseobacterium, with the highest sequence similarity to the type strains of Chryseobacterium indoltheticum (97·7 %), Chryseobacterium scophthalmum (97·5 %), Chryseobacterium joostei (97·2 %) and Chryseobacterium defluvii (97·2 %). The major whole-cell fatty acids were iso-C15 : 0 (52·2 %) and iso-C17 : 0 3-OH. DNA–DNA hybridization experiments revealed levels of only 27·4 % to C. scophthalmum, 27·1 % to C. indoltheticum, 14·1 % to C. joostei and 7·8 % to C. defluvii. DNA–DNA relatedness and biochemical and chemotaxonomic properties demonstrate that strain CC-H3-2 T represents a novel species, for which the name Chryseobacterium formosense sp. nov. is proposed. The type strain is CC-H3-2T (=CCUG 49271T=CIP 108367T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1515-1520 ◽  
Author(s):  
Jaewoo Yoon ◽  
Satoru Matsuda ◽  
Kyoko Adachi ◽  
Hiroaki Kasai ◽  
Akira Yokota

A Gram-negative-staining, obligately aerobic, non-motile, rod-shaped and chemoheterotrophic bacterium, designated strain MN1-1006T, was isolated from an ascidian (sea squirt) sample, and was studied using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the new isolate shared approximately 93–99% sequence similarity with recognized species of the genus Rubritalea within the phylum ‘Verrucomicrobia’. DNA–DNA hybridization values between strain MN1-1006T and Rubritalea squalenifaciens HOact23T and Rubritalea sabuli YM29-052T were 57% and 14.5%, respectively. Strain MN1-1006T produced carotenoid compounds that rendered the cell biomass a reddish pink colour. The strain also contained squalene. The cell-wall peptidoglycan of the novel strain contained muramic acid and meso-diaminopimelic acid. The DNA G+C content of strain MN1-1006T was 51.4 mol%. The major cellular fatty acids were iso-C14:0, iso-C16:0 and anteiso-C15:0. The major isoprenoid quinone was MK-9. On the basis of these data, it was concluded that strain MN1-1006T represents a novel species of the genus Rubritalea, for which the name Rubritalea halochordaticola sp. nov. is proposed. The type strain is MN1-1006T ( = KCTC 23186T = NBRC 107102T).


2006 ◽  
Vol 56 (2) ◽  
pp. 413-416 ◽  
Author(s):  
Sabri M. Naser ◽  
Marc Vancanneyt ◽  
Bart Hoste ◽  
Cindy Snauwaert ◽  
Katrien Vandemeulebroecke ◽  
...  

The taxonomic relatedness between the species Enterococcus casseliflavus and Enterococcus flavescens and between Enterococcus italicus and Enterococcus saccharominimus was investigated. Literature data had already indicated the synonymy between E. casseliflavus and E. flavescens, but this observation had not been formally published. Additional evidence that the two taxa represent a single species was provided by comparison of the partial sequences for three housekeeping genes, phenylalanyl-tRNA synthase alpha subunit (pheS), RNA polymerase alpha subunit (rpoA) and the alpha subunit of ATP synthase (atpA). Additional genomic data derived from DNA–DNA hybridization demonstrated that the two species are synonymous. For E. italicus and E. saccharominimus, two recently described taxa, a high 16S rRNA gene sequence similarity of >99 % and analogous phenotypic features indicated a close taxonomic relatedness. The same multilocus sequence analysis scheme for the three housekeeping genes was also applied for E. italicus and E. saccharominimus and indicated possible conspecificity, an observation that was also confirmed by a high DNA–DNA hybridization value (⩾78 %). Data from the present study led to the proposal that E. flavescens should be reclassified as a later synonym of E. casseliflavus and that E. saccharominimus should be reclassified as a later synonym of E. italicus.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3131-3136 ◽  
Author(s):  
Hina Singh ◽  
Juan Du ◽  
Kyung-Hwa Won ◽  
Jung-Eun Yang ◽  
Shahina Akter ◽  
...  

A novel bacterial strain, designated THG-PC7T, was isolated from fallow farmland soil in Yongin, South Korea. Cells of strain THG-PC7T were Gram-stain-negative, dark yellow, aerobic, rod-shaped and had gliding motility. Strain THG-PC7T grew optimally at 25–35 °C, at pH 7 and in the absence of NaCl. Comparative 16S rRNA gene sequence analysis identified strain THG-PC7T as belonging to the genus Lysobacter, exhibiting highest sequence similarity with Lysobacter ximonensis KCTC 22336T (98.7 %) followed by Lysobacter niastensis KACC 11588T (95.7 %). In DNA–DNA hybridization tests, DNA relatedness between strain THG-PC7T and its closest phylogenetic neighbour L. ximonensis was below 25 %. The DNA G+C content of the novel isolate was determined to be 62.5 mol%. Flexirubin-type pigments were found to be present. The major cellular fatty acids were determined to be iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C17 : 1ω9c. The major respiratory quinone was identified as ubiquonone-8 (Q8). The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospolipid. On the basis of results from DNA–DNA hybridization and the polyphasic data, strain THG-PC7T represents a novel species of the genus Lysobacter, for which the name Lysobacter novalis sp. nov. is proposed. The type strain is THG-PC7T( = KACC 18276T = CCTCC AB 2014319T).


Author(s):  
Auttaporn Booncharoen ◽  
Wonnop Visessanguan ◽  
Nattakorn Kuncharoen ◽  
Supalurk Yiamsombut ◽  
Pannita Santiyanont ◽  
...  

An aerobic, Gram-stain-positive, endospore-forming, rod-shaped and moderately halophilic strain SKP4-6T, was isolated from shrimp paste (Ka-pi) collected from Samut Sakhon Province, Thailand. Phylogenetic analysis revealed that strain SKP4-6T belonged to the genus Halobacillus and was most closely related to Halobacillus salinus JCM 11546T (98.6 %), Halobacillus locisalis KCTC 3788T (98.6 %) and Halobacillus yeomjeoni KCTC 3957T (98.6 %) based on 16S rRNA gene sequence similarity. The digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain SKP4-6T and its related species were 18.2–19.3 % and 69.84–84.51 %, respectively, which were lower than the threshold recommended for species delineation. The strain grew optimally at 30–40 °C, at pH 7.0 and with 10–15 % (w/v) NaCl. It contained l-Orn–d-Asp in the cell wall peptidoglycan. The DNA G+C content was 44.8 mol%. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The predominant isoprenoid quinone was MK-7. Phosphatidylglycerol and diphosphatidylglycerol were present as major polar lipids. Based on this polyphasic approach, digital DNA–DNA relatedness and ANI values, strain SKP4-6T represents a novel species of the genus Halobacillus , for which the name Halobacillus fulvus sp. nov. is proposed. The type strain is SKP4-6T (=JCM 32624T=TISTR 2595T).


Author(s):  
Angéline Antezack ◽  
Manon Boxberger ◽  
Mariem Ben Khedher ◽  
Bernard La Scola ◽  
Virginie Monnet-Corti

A Gram-stain-negative bacterium, designated strain Marseille-Q3039T, was isolated from subgingival dental plaque of a woman with gingivitis in Marseille, France. Strain Marseille-Q3039T was found to be an anaerobic, motile and spore-forming crescent-shaped bacterium that grew at 25–41.5 °C (optimum, 37 °C), pH 5.5–8.5 (optimum, pH 7.5) and salinity of 5.0 g l−1 NaCl. The results of 16S rRNA gene sequence analysis revealed that strain Marseille-Q3039T was closely related to Selenomonas infelix ATCC 43532T (98.42 % similarity), Selenomonas dianae ATCC 43527T (97.25 %) and Centipedia periodontii DSM 2778T (97.19 %). The orthologous average nucleotide identity and digital DNA–DNA hybridization relatedness between strain Q3039T and its closest phylogenetic neighbours were respectively 84.57 and 28.2 % for S. infelix ATCC 43532T and 83.93 and 27.2 % for C. periodontii DSM 2778T. The major fatty acids were identified as C13 : 0 (27.7 %), C15 : 0 (24.4 %) and specific C13 : 0 3-OH (12.3 %). Genome sequencing revealed a genome size of 2 351 779 bp and a G+C content of 57.2 mol%. On the basis of the results from phenotypic, chemotaxonomic, genomic and phylogenetic analyses and data, we concluded that strain Marseille-Q3039T represents a novel species of the genus Selenomonas , for which the name Selenomonas timonae sp. nov. is proposed (=CSUR Q3039=CECT 30128).


2011 ◽  
Vol 61 (3) ◽  
pp. 482-486 ◽  
Author(s):  
Sung M. Kim ◽  
Sae W. Park ◽  
Sang T. Park ◽  
Young M. Kim

A bacterial strain, PY2T, capable of oxidizing carbon monoxide, was isolated from a soil sample collected from a roadside at Yonsei University, Seoul, Korea. On the basis of 16S rRNA gene sequence analysis, strain PY2T was shown to belong to the genus Terrabacter and was most closely related to Terrabacter lapilli LR-26T (99.1 % similarity). Strain PY2T was characterized chemotaxonomically as having iso-C15 : 0 as the predominant fatty acid, MK-8(H4) as the major menaquinone, ll-diaminopimelic acid as the diagnostic diamino acid of the cell wall, as possessing a polar lipid profile that included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and unknown amino-containing phosphoglycolipids, and having a DNA G+C content of 75.6 mol%. DNA–DNA relatedness values between strain PY2T and the type strains of T. lapilli, Terrabacter tumescens, Terrabacter terrae and Terrabacter aerolatus were 20.0 %, 22.9 %, 35.9 % and 64.5 %, respectively. Based on the combined evidence from the phylogenetic analyses, chemotaxonomic data and DNA–DNA hybridization experiments, it is proposed that strain PY2T represents a novel species for which the name Terrabacter carboxydivorans sp. nov. is proposed. The type strain is PY2T (=KCCM 42922T=JCM 16259T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1301-1310 ◽  
Author(s):  
R. J. Akhurst ◽  
N. E. Boemare ◽  
P. H. Janssen ◽  
M. M. Peel ◽  
D. A. Alfredson ◽  
...  

The relationship of Photorhabdus isolates that were cultured from human clinical specimens in Australia to Photorhabdus asymbiotica isolates from human clinical specimens in the USA and to species of the genus Photorhabdus that are associated symbiotically with entomopathogenic nematodes was evaluated. A polyphasic approach that involved DNA–DNA hybridization, phylogenetic analyses of 16S rRNA and gyrB gene sequences and phenotypic characterization was adopted. These investigations showed that gyrB gene sequence data correlated well with DNA–DNA hybridization and phenotypic data, but that 16S rRNA gene sequence data were not suitable for defining species within the genus Photorhabdus. Australian clinical isolates proved to be related most closely to clinical isolates from the USA, but the two groups were distinct. A novel subspecies, Photorhabdus asymbiotica subsp. australis subsp. nov. (type strain, 9802892T=CIP 108025T=ACM 5210T), is proposed, with the concomitant creation of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. Analysis of gyrB sequences, coupled with previously published data on DNA–DNA hybridization and PCR-RFLP analysis of the 16S rRNA gene, indicated that there are more than the three subspecies of Photorhabdus luminescens that have been described and confirmed the validity of the previously proposed subdivision of Photorhabdus temperata. Although a non-luminescent, symbiotic isolate clustered consistently with P. asymbiotica in gyrB phylogenetic analyses, DNA–DNA hybridization indicated that this isolate does not belong to the species P. asymbiotica and that there is a clear distinction between symbiotic and clinical species of Photorhabdus.


2007 ◽  
Vol 57 (9) ◽  
pp. 1966-1969 ◽  
Author(s):  
Shoichi Hosoya ◽  
Akira Yokota

A Gram-negative, rod-shaped bacterium, IG8T, was isolated from seawater off the Sanriku coast, Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain IG8T represented a separate lineage within the genus Loktanella; the highest 16S rRNA gene sequence similarity values were found with the type strains of Loktanella salsilacus (98.6 %) and Loktanella fryxellensis (98.4 %). DNA–DNA hybridization values between strain IG8T and the type strains of L. salsilacus (27.9–36.1 %) and L. fryxellensis (11.3–31.0 %) were clearly below 70 %, the generally accepted limit for species delineation. The DNA G+C content of strain IG8T was 66.3 mol%. On the basis of DNA–DNA hybridization, some biochemical characteristics and 16S rRNA gene sequence comparison, it is proposed that the isolate represents a novel species, Loktanella atrilutea sp. nov. The type strain is IG8T (=IAM 15450T=NCIMB 14280T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2247-2253 ◽  
Author(s):  
Nurettin Sahin ◽  
Akio Tani ◽  
Recep Kotan ◽  
Ivo Sedláček ◽  
Kazuhide Kimbara ◽  
...  

Five isolates, designated TA2, TA4, TA25T, KOxT and NS15T were isolated in previous studies by enrichment in mineral medium with potassium oxalate as the sole carbon source and were characterized using a polyphasic approach. The isolates were Gram-reaction-negative, aerobic, non-spore-forming rods. Phylogenetic analyses based on 16S rRNA and DNA gyrase B subunit (gyrB) gene sequences confirmed that the isolates belonged to the genus Pandoraea and were most closely related to Pandoraea sputorum and Pandoraea pnomenusa (97.2–99.7 % 16S rRNA gene sequence similarity). The isolates could be differentiated from their closest relatives on the basis of several phenotypic characteristics. The major cellular fatty acid profiles of the isolates comprised C16 : 0, C18 : 1ω7c, C17 : 0 cyclo and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). On the basis of DNA–DNA hybridization studies and phylogenetic analyses, the isolates represent three novel species within the genus Pandoraea, for which the names Pandoraea oxalativorans sp. nov. (TA25T  = NBRC 106091T  = CCM 7677T  = DSM 23570T), Pandoraea faecigallinarum sp. nov. (KOxT  = NBRC 106092T  = CCM 2766T  = DSM 23572T) and Pandoraea vervacti sp. nov. (NS15T  = NBRC 106088T  = CCM 7667T  = DSM 23571T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document