Pandoraea oxalativorans sp. nov., Pandoraea faecigallinarum sp. nov. and Pandoraea vervacti sp. nov., isolated from oxalate-enriched culture

2011 ◽  
Vol 61 (9) ◽  
pp. 2247-2253 ◽  
Author(s):  
Nurettin Sahin ◽  
Akio Tani ◽  
Recep Kotan ◽  
Ivo Sedláček ◽  
Kazuhide Kimbara ◽  
...  

Five isolates, designated TA2, TA4, TA25T, KOxT and NS15T were isolated in previous studies by enrichment in mineral medium with potassium oxalate as the sole carbon source and were characterized using a polyphasic approach. The isolates were Gram-reaction-negative, aerobic, non-spore-forming rods. Phylogenetic analyses based on 16S rRNA and DNA gyrase B subunit (gyrB) gene sequences confirmed that the isolates belonged to the genus Pandoraea and were most closely related to Pandoraea sputorum and Pandoraea pnomenusa (97.2–99.7 % 16S rRNA gene sequence similarity). The isolates could be differentiated from their closest relatives on the basis of several phenotypic characteristics. The major cellular fatty acid profiles of the isolates comprised C16 : 0, C18 : 1ω7c, C17 : 0 cyclo and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). On the basis of DNA–DNA hybridization studies and phylogenetic analyses, the isolates represent three novel species within the genus Pandoraea, for which the names Pandoraea oxalativorans sp. nov. (TA25T  = NBRC 106091T  = CCM 7677T  = DSM 23570T), Pandoraea faecigallinarum sp. nov. (KOxT  = NBRC 106092T  = CCM 2766T  = DSM 23572T) and Pandoraea vervacti sp. nov. (NS15T  = NBRC 106088T  = CCM 7667T  = DSM 23571T) are proposed.

2007 ◽  
Vol 57 (5) ◽  
pp. 941-946 ◽  
Author(s):  
Hidenori Hayashi ◽  
Kensaku Shibata ◽  
Mitsuo Sakamoto ◽  
Shinichi Tomita ◽  
Yoshimi Benno

Six strains (CB7T, CB18, CB23, CB26, CB28 and CB35T) were isolated from human faeces. Based on phylogenetic analysis, phenotypic characteristics, cellular fatty acid profiles and menaquinone profiles, these strains could be included within the genus Prevotella and made up two clusters. 16S rRNA gene sequence analysis indicated that five strains were most closely related to Prevotella veroralis, sharing about 92 % sequence similarity; the remaining strain was most closely related to Prevotella shahii, sharing about 90 % sequence similarity. All six strains were obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative rods. The cellular fatty acid compositions of the six strains differed significantly from those of other Prevotella species. Five strains (CB7T, CB18, CB23, CB26 and CB28) contained dimethyl acetals and the major menaquinones of these strains were MK-11, MK-12 and MK-13. The major menaquinones of CB35T were MK-12 and MK-13. Based on phenotypic and phylogenetic findings, two novel species, Prevotella copri sp. nov. and Prevotella stercorea sp. nov., are proposed, representing the two different strain clusters. The DNA G+C contents of strains CB7T and CB35T were 45.3 and 48.2 mol%, respectively. The type strains of P. copri and P. stercorea are CB7T (=JCM 13464T=DSM 18205T) and CB35T (=JCM 13469T=DSM 18206T), respectively.


2005 ◽  
Vol 55 (5) ◽  
pp. 2101-2104 ◽  
Author(s):  
Kouta Hatayama ◽  
Hirofumi Shoun ◽  
Yasuichi Ueda ◽  
Akira Nakamura

Four thermophilic, Gram-positive strains, designated H0165T, 500275T, C0170 and 700375, were isolated from a composting process in Japan. The isolates grew aerobically at about 65 °C on a solid medium with formation of substrate mycelia; spores were produced singly along the mycelia. These morphological characters resembled those of some type strains of species belonging to the family ‘Thermoactinomycetaceae’, except that aerial mycelia were not formed. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the closest related species to the isolates were members of the family ‘Thermoactinomycetaceae’, but that the isolates formed an independent phylogenetic lineage. Some chemotaxonomic characters of the isolates, such as DNA G+C contents of 58·7–60·3 mol%, MK-7 as the major menaquinone and cellular fatty acid profiles, differed from those of members of the family ‘Thermoactinomycetaceae’. DNA–DNA hybridization showed that the isolates could be divided into two genomic groups, strain H0165T and the other three strains. These results indicated that the four isolates should be classified into two species of a novel genus in the family ‘Thermoactinomycetaceae’, for which the names Planifilum fimeticola gen. nov., sp. nov. (type strain H0165T=ATCC BAA-969T=JCM 12507T) and Planifilum fulgidum sp. nov. (type strain 500275T=ATCC BAA-970T=JCM 12508T) are proposed.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4895-4901 ◽  
Author(s):  
Zhaoxu Ma ◽  
Chongxi Liu ◽  
Jianlong Fan ◽  
Hairong He ◽  
Chuang Li ◽  
...  

A novel actinobacterium, designated strain NEAU-QY2T, was isolated from the leaves of Sonchus oleraceus L. specimen, collected from Wuchang, Heilongjiang Province, China. A polyphasic study was carried out to establish the taxonomic position of this strain. The organism formed single spores with rough surfaces on substrate mycelia. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-QY2T belonged to the genus Plantactinospora and formed a monophyletic clade with its closest related strains Plantactinospora endophytica YIM 68255T (99.2 % 16S rRNA gene sequence similarity), Plantactinospora veratri NEAU-FHS4T (98.8 %) and Plantactinospora mayteni YIM 61359T (98.7 %), an association that was supported by a bootstrap value of 90 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. However, DNA–DNA hybridization values between strain NEAU-QY2T and the three closely related strains were below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA–DNA hybridization results, strain NEAU-QY2T was distinguished from closely related strains and is classified as representing a novel species of the genus Plantactinospora, for which the name Plantactinospora sonchi sp. nov. is proposed. The type strain is NEAU-QY2T ( = CGMCC 4.7216T = JCM 30345T).


2021 ◽  
Author(s):  
Yimin Pan ◽  
Qiaoqiao Ren ◽  
Lingyun Chen ◽  
Yunxia Jiang ◽  
Jiguo Wu ◽  
...  

Abstract A Gram-positive, non-motile, non-spore-forming and short rod-shaped actinomycete strain, designated GA224T, was isolated from an electronic waste associated bioaerosols. The isolate is facultatively anaerobic, which is able to grow at 25–40 ℃ (optimum 37 ℃) and pH 6.5–8.5 (optimum 8.0). The diamino acid in the cell wall of strain GA224T is 2,4-diaminobutyric acid (DAB), while major menaquinone is MK-12. The polar lipid profile is composed of diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipids, unidentified glycolipids and unidentified lipid. The major cellular fatty acid is anteiso-C15:0 and iso-C16:0. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GA224T fell within the genus Yonghaparkia, the highest 16S rRNA gene sequence similarity values (98.60%) being obtained with respect to Yonghaparkia alkaliphile KSL-113T. The draft genome of strain GA224T comprised 2,495,189 bp with a G+C content of 72.17 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain GA224T and phylogenetically related Yonghaparkia species were lower than 95% and 70%, respectively. Based on the phenotypic, chemotaxonomic and genomic data, strain GA224T represents a novel species, for which the name Yonghaparkia aerolata sp. nov. is proposed, with GA224T as the type strain (= GDMCC 1.2165T = JCM 34462T).


2007 ◽  
Vol 57 (1) ◽  
pp. 146-150 ◽  
Author(s):  
Min-Ju Park ◽  
Ho-Bin Kim ◽  
Dong-Shan An ◽  
Hee-Chan Yang ◽  
Seok-Tae Oh ◽  
...  

Two novel polysaccharide-degrading bacteria (strains DCY03T and DCY04) were isolated from a soil sample of a ginseng field in the Republic of Korea and were identified as representing members of the genus Paenibacillus on the basis of phenotypic characteristics and phylogenetic inference based on 16S rRNA gene sequences. Cells of the two isolates were Gram-positive, spore-forming, non-motile, straight rods. Based on DNA–DNA relatedness data, the strains were considered to belong to the same species. The DNA G+C content ranged from 56.6 to 57.0 mol%. The predominant cellular fatty acid was anteiso-C15 : 0 (63.8–62.8 %). Levels of 16S rRNA gene sequence similarity between the two novel isolates and the type strains of recognized Paenibacillus species were 91.4–96.5 %. Strains DCY03T and DCY04 could clearly be distinguished from phylogenetically closely related Paenibacillus species on the basis of DNA–DNA relatedness data and phenotypic characteristics. Therefore, on the basis of these data, the two isolates are considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus soli sp. nov. is proposed. The type strain is DCY03T (=KCTC 13010T=LMG 23604T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2472-2475 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Tae-Kwang Oh

A Gram-positive, rod- or coccoid-shaped bacterial strain, DS-17T, was isolated from a soil in Dokdo, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain DS-17T grew optimally at around pH 8.0 and 30 °C in the presence of 0.5–1.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DS-17T belonged to the genus Nocardioides. The chemotaxonomic properties of strain DS-17T were consistent with those of the genus Nocardioides: the cell-wall peptidoglycan type was based on ll-2,6-diaminopimelic acid, MK-8(H4) was the predominant menaquinone and iso-C16 : 0, C17 : 1 ω8c and C17 : 0 were the major fatty acids. The DNA G+C content was 71.5 mol%. Strain DS-17T exhibited 16S rRNA gene sequence similarity values of 94.5–96.9 % to the type strains of recognized Nocardioides species. Strain DS-17T could be distinguished from recognized Nocardioides species by differences in phenotypic characteristics. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain DS-17T is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides terrigena sp. nov. is proposed. The type strain is DS-17T (=KCTC 19217T=JCM 14582T).


2007 ◽  
Vol 57 (5) ◽  
pp. 916-922 ◽  
Author(s):  
Tomoo Sawabe ◽  
Yusuke Fujimura ◽  
Kentaro Niwa ◽  
Hideaki Aono

Nine alginolytic, facultatively anaerobic, non-motile bacteria were isolated from the guts of the abalones Haliotis discus discus, H. gigantea, H. madaka and H. rufescens. Phylogenetic analyses based on 16S rRNA gene sequences indicated that these bacteria were closely related to Vibrio superstes G3-29T (98.6–99.3 % sequence similarity). DNA–DNA hybridization and phylogenetic analysis based on the gapA gene demonstrated that six strains constituted one bacterial species, two strains represented a second species and one strain represented a third species. The three novel bacterial species were different from all currently known vibrios. The names Vibrio comitans sp. nov. (type strain GHG2-1T=LMG 23416T=NBRC 102076T; DNA G+C content 45.0–48.0 mol%), Vibrio inusitatus sp. nov. (type strain RW14T=LMG 23434T=NBRC 102082T; DNA G+C content 43.1–43.7 mol%) and Vibrio rarus sp. nov. (type strain RW22T=LMG 23674T=NBRC 102084T; DNA G+C content 43.8 mol%) are proposed to encompass these new taxa. Several phenotypic features were revealed that discriminate V. comitans, V. rarus and V. inusitatus from other Vibrio species.


2011 ◽  
Vol 61 (5) ◽  
pp. 1133-1137 ◽  
Author(s):  
Xuechang Wu ◽  
Haihuan Fang ◽  
Chaodong Qian ◽  
Yanping Wen ◽  
Xiaobo Shen ◽  
...  

Two closely related, Gram-stain-negative, rod-shaped, spore-forming strains, B27T and F6-B70, were isolated from soil samples of Tianmu Mountain National Natural Reserve in Zhejiang, China. Phylogenetic analysis based on 16S rRNA gene and rpoB sequences indicated that the isolates were members of the genus Paenibacillus. Both isolates were closely related to Paenibacillus ehimensis IFO 15659T, Paenibacillus elgii SD17T and Paenibacillus koreensis YC300T (≥95.2 % 16S rRNA gene sequence similarity). DNA–DNA relatedness between strain B27T and P. ehimensis DSM 11029T, P. elgii NBRC 100335T and P. koreensis KCTC 2393T was 21.2, 28.6 and 16.8 %, respectively. The major cellular fatty acids of strains B27T and F6-B70 were anteiso-C15 : 0 and iso-C15 : 0. The cell wall contained meso-diaminopimelic acid. The two isolates differed from their closest neighbours in terms of phenotypic characteristics and cellular fatty acid profiles (such as variable for oxidase, negative for methyl red test, unable to produce acid from d-fructose and glycogen and relatively higher amounts of iso-C15 : 0 and lower amounts of C16 : 0 and iso-C16 : 0). Strains B27T and F6-B70 represent a novel species of the genus Paenibacillus, for which the name Paenibacillus tianmuensis sp. nov. is proposed. The type strain is B27T ( = DSM 22342T  = CGMCC 1.8946T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1387-1393 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Hwe-Su Yi ◽  
Tae-Kwang Oh ◽  
Choong-Min Ryu

A Gram-negative, non-motile, pale-yellow, rod-shaped bacterial strain, DS-42T, was isolated from a soil in Korea and its taxonomic position was investigated by a polyphasic study. Strain DS-42T grew optimally at 25 °C and pH 7.0–8.0. Strain DS-42T did not form nodules on three different legumes, and the nodD and nifH genes were also not detected by PCR. Strain DS-42T contained Q-10 as the predominant ubiquinone. The major cellular fatty acid was C18 : 1 ω7c. The DNA G+C content was 60.8 mol%. Phylogenetic analyses based on 16S rRNA, atpD and recA gene sequences showed that strain DS-42T belonged to the genus Rhizobium. Strain DS-42T showed 16S rRNA gene sequence similarity of 94.1–97.7 % to the type strains of recognized Rhizobium species. DNA–DNA relatedness between strain DS-42T and the type strains of Rhizobium huautlense, R. galegae, R. loessense and R. cellulosilyticum was 13–19 %, indicating that strain DS-42T was distinct from them genetically. Strain DS-42T can also be differentiated from these four phylogenetically related Rhizobium species by various phenotypic properties. On the basis of phenotypic properties, phylogenetic distinctiveness and genetic data, strain DS-42T is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium soli sp. nov. is proposed. The type strain is DS-42T (=KCTC 12873T =JCM 14591T).


2005 ◽  
Vol 55 (4) ◽  
pp. 1415-1427 ◽  
Author(s):  
Régine Samson ◽  
Jean Bernard Legendre ◽  
Richard Christen ◽  
Marion Fischer-Le Saux ◽  
Wafa Achouak ◽  
...  

A collection of 75 strains of Pectobacterium chrysanthemi (including all biovars and pathovars) and the type strains of Brenneria paradisiaca (CFBP 4178T) and Pectobacterium cypripedii (CFBP 3613T) were studied by DNA–DNA hybridization, numerical taxonomy of 121 phenotypic characteristics, serology and 16S rRNA gene-based phylogenetic analyses. From analysis of 16S rRNA gene sequences, it was deduced that P. chrysanthemi strains and B. paradisiaca CFBP 4178T formed a clade distinct from the genera Pectobacterium and Brenneria; therefore, it is proposed to transfer all the strains to a novel genus, Dickeya gen. nov. By DNA–DNA hybridization, the strains of P. chrysanthemi were distributed among six genomic species: genomospecies 1 harbouring 16 strains of biovar 3 and four strains of biovar 8, genomospecies 2 harbouring 16 strains of biovar 3, genomospecies 3 harbouring two strains of biovar 6 and five strains of biovar 5, genomospecies 4 harbouring five strains of biovar 2, genomospecies 5 harbouring six strains of biovar 1, four strains of biovar 7 and five strains of biovar 9 and genomospecies 6 harbouring five strains of biovar 4 and B. paradisiaca CFBP 4178T. Two strains of biovar 3 remained unclustered. Biochemical criteria, deduced from a numerical taxonomic study of phenotypic characteristics, and serological reactions allowed discrimination of the strains belonging to the six genomic species. Thus, it is proposed that the strains clustered in these six genomic species be assigned to the species Dickeya zeae sp. nov. (type strain CFBP 2052T=NCPPB 2538T), Dickeya dadantii sp. nov. (type strain CFBP 1269T=NCPPB 898T), Dickeya chrysanthemi comb. nov. (subdivided into two biovars, bv. chrysanthemi and bv. parthenii), Dickeya dieffenbachiae sp. nov. (type strain CFBP 2051T=NCPPB 2976T), Dickeya dianthicola sp. nov. (type strain CFBP 1200T=NCPPB 453T) and Dickeya paradisiaca comb. nov., respectively.


Sign in / Sign up

Export Citation Format

Share Document