Phylogeny of the family Pasteurellaceae based on rpoB sequences

2004 ◽  
Vol 54 (4) ◽  
pp. 1393-1399 ◽  
Author(s):  
Bożena Korczak ◽  
Henrik Christensen ◽  
Stefan Emler ◽  
Joachim Frey ◽  
Peter Kuhnert

Sequences of the gene encoding the β-subunit of the RNA polymerase (rpoB) were used to delineate the phylogeny of the family Pasteurellaceae. A total of 72 strains, including the type strains of the major described species as well as selected field isolates, were included in the study. Selection of universal rpoB-derived primers for the family allowed straightforward amplification and sequencing of a 560 bp fragment of the rpoB gene. In parallel, 16S rDNA was sequenced from all strains. The phylogenetic tree obtained with the rpoB sequences reflected the major branches of the tree obtained with the 16S rDNA, especially at the genus level. Only a few discrepancies between the trees were observed. In certain cases the rpoB phylogeny was in better agreement with DNA–DNA hybridization studies than the phylogeny derived from 16S rDNA. The rpoB gene is strongly conserved within the various species of the family of Pasteurellaceae. Hence, rpoB gene sequence analysis in conjunction with 16S rDNA sequencing is a valuable tool for phylogenetic studies of the Pasteurellaceae and may also prove useful for reorganizing the current taxonomy of this bacterial family.

2004 ◽  
Vol 54 (5) ◽  
pp. 1643-1648 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Makoto Suzuki ◽  
Marc Vancanneyt ◽  
Ilse Cleenwerck ◽  
Anatoly M. Lysenko ◽  
...  

The taxonomic position of four newly isolated marine, heterotrophic, gliding, Gram-negative, aerobic, pigmented, agarolytic bacteria was established. 16S rRNA gene sequence analysis indicated affiliation of the isolates to the genus Zobellia in the family Flavobacteriaceae. DNA–DNA hybridization experiments revealed that the strains studied represent three distinct and novel species, for which the names Zobellia amurskyensis sp. nov., Zobellia laminariae sp. nov. and Zobellia russellii sp. nov. are proposed, with KMM 3526T (=LMG 22069T=CCUG 47080T), KMM 3676T (=LMG 22070T=CCUG 47083T) and KMM 3677T (=LMG 22071T=CCUG 47084T), respectively, as the type strains.


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1646-1652 ◽  
Author(s):  
Z. Begum ◽  
T. N. R. Srinivas ◽  
P. Manasa ◽  
B. Sailaja ◽  
B. Sunil ◽  
...  

A novel Gram-negative, rod–coccus shaped, non-motile, strain, RS-3T, was isolated from a sediment sample collected from the marine transect of Kongsfjorden, Ny-Ålesund, Svalbard, Arctic. Colonies and broth cultures were yellowish in colour due to the presence of carotenoids. Strain RS-3T was positive for oxidase, aesculinase, caseinase, gelatinase and urease activities and negative for amylase, catalase, lipase, lysine decarboxylase, ornithine decarboxylase, DNase and β-galactosidase activities. The predominant fatty acids were iso-C15 : 0 (18.0), anteiso-C15 : 0 (16.8), iso-C15 : 1 G (14.2), anteiso-C15 : 1 A (6.0) and iso-C15 : 0 3-OH (6.8). Strain RS-3T contained MK-6 (72.42 %) and MK-7 (27.58 %) as the major respiratory quinones and phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids make up the polar lipid composition. The DNA G+C content of strain RS-3T was 34.7±1.2 mol%. The 16S rRNA gene sequence analysis indicated that Winogradskyella pacifica and Winogradskyella thalassocola are the most closely related species with sequence similarities to the type strains of these species of 98.5 and 97.7 %, respectively. However, DNA–DNA hybridization with Winogradskyella pacifica KCTC 22997T and Winogradskyella thalassocola DSM 15363T showed a relatedness of 22 and 42.5 % with respect to strain RS-3T. Based on the DNA–DNA hybridization values, phenotypic and chemotaxonomic characteristics and phylogenetic inference, strain RS-3T is proposed as a novel species of the genus Winogradskyella , for which the name Winogradskyella psychrotolerans sp. nov. is proposed. The type strain of Winogradskyella psychrotolerans sp. nov. is RS-3T ( = CIP 110154T = NBRC 106169T). An emended description of the genus Winogradskyella is provided.


1999 ◽  
Vol 181 (23) ◽  
pp. 7291-7297 ◽  
Author(s):  
Anne Breüner ◽  
Lone Brøndsted ◽  
Karin Hammer

ABSTRACT In this work, the phage-encoded proteins involved in site-specific excision of the prophage genome of the temperate lactococcal bacteriophage TP901-1 were identified. The phage integrase is required for the process, and a low but significant frequency of excision is observed when the integrase is the only phage protein present. However, 100% excision is observed when the phage protein Orf7 is provided as well as the integrase. Thus, Orf7 is the TP901-1 excisionase, and it is the first excisionase identified that is used during excisive recombination catalyzed by an integrase belonging to the family of extended resolvases. Orf7 is a basic protein of 64 amino acids, and the corresponding gene (orf7) is the third gene in the early lytic operon. This location of an excisionase gene of a temperate bacteriophage has never been described before. The experiments are based on in vivo excision of specifically designed excision vectors carrying the TP901-1 attP site which are integrated intoattB on the chromosome of Lactococcus lactis. Excision of the vectors was investigated in the presence of different TP901-1 genes. In order to detect very low frequencies of excision, a method for positive selection of loss of genetic material based upon the upp gene (encoding uracil phosphoribosyltransferase) was designed, since upp mutants are resistant to fluorouracil. By using this system, frequencies of excision on the order of 10−5 per cell could easily be measured. The described selection principle may be of general use for many organisms and also for types of deletion events other than excision.


2004 ◽  
Vol 54 (4) ◽  
pp. 1017-1023 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Suk Kyun Han ◽  
Anatoly M. Lysenko ◽  
Manfred Rohde ◽  
...  

Six novel gliding, heterotrophic, Gram-negative, yellow-pigmented, aerobic, oxidase- and catalase-positive bacteria were isolated from the green alga Ulva fenestrata, sea water and a bottom sediment sample collected in the Gulf of Peter the Great, Sea of Japan. 16S rRNA gene sequence analysis revealed that the strains studied were members of the family Flavobacteriaceae. On the basis of their phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the novel bacteria have been assigned to the new genus Maribacter gen. nov., as Maribacter sedimenticola sp. nov., Maribacter orientalis sp. nov., Maribacter aquivivus sp. nov. and Maribacter ulvicola sp. nov., with the type strains KMM 3903T (=KCTC 12966T=CCUG 47098T), KMM 3947T (=KCTC 12967T=CCUG 48008T), KMM 3949T (=KCTC 12968T=CCUG 48009T) and KMM 3951T (=KCTC 12969T=DSM 15366T), respectively.


2011 ◽  
Vol 61 (3) ◽  
pp. 482-486 ◽  
Author(s):  
Sung M. Kim ◽  
Sae W. Park ◽  
Sang T. Park ◽  
Young M. Kim

A bacterial strain, PY2T, capable of oxidizing carbon monoxide, was isolated from a soil sample collected from a roadside at Yonsei University, Seoul, Korea. On the basis of 16S rRNA gene sequence analysis, strain PY2T was shown to belong to the genus Terrabacter and was most closely related to Terrabacter lapilli LR-26T (99.1 % similarity). Strain PY2T was characterized chemotaxonomically as having iso-C15 : 0 as the predominant fatty acid, MK-8(H4) as the major menaquinone, ll-diaminopimelic acid as the diagnostic diamino acid of the cell wall, as possessing a polar lipid profile that included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and unknown amino-containing phosphoglycolipids, and having a DNA G+C content of 75.6 mol%. DNA–DNA relatedness values between strain PY2T and the type strains of T. lapilli, Terrabacter tumescens, Terrabacter terrae and Terrabacter aerolatus were 20.0 %, 22.9 %, 35.9 % and 64.5 %, respectively. Based on the combined evidence from the phylogenetic analyses, chemotaxonomic data and DNA–DNA hybridization experiments, it is proposed that strain PY2T represents a novel species for which the name Terrabacter carboxydivorans sp. nov. is proposed. The type strain is PY2T (=KCCM 42922T=JCM 16259T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1968-1972 ◽  
Author(s):  
Myungjin Lee ◽  
Song-Geun Woo ◽  
Giho Park ◽  
Myung Kyum Kim

A Gram-negative, non-motile bacterium, designated MJ17T, was isolated from sludge at the Daejeon sewage disposal plant in South Korea. Comparative 16S rRNA gene sequence analysis showed that strain MJ17T belonged to the genus Paracoccus in the family Rhodobacteraceae of the class Alphaproteobacteria. 16S rRNA gene sequence similarities between strain MJ17T and type strains of species of the genus Paracoccus were 94.1–97.4 %. The highest similarities were between strain MJ17T and Paracoccus homiensis DD-R11T, Paracoccus zeaxanthinifaciens ATCC 21588T and Paracoccus alcaliphilus JCM 7364T (97.4, 97.2 and 96.3 %, respectively). Strain MJ17T exhibited <22 % DNA–DNA relatedness with P. homiensis KACC 11518T and P. zeaxanthinifaciens JCM 21774T. The G+C content of the genomic DNA was 58.7 mol%. Strain MJ17T contained ubiquinone Q-10. The major fatty acids were C18 : 0 (11.3 %), C16 : 0 (10.2 %) and summed feature 7 (containing one or more of C18 : 1ω7c, C18 : 1ω9c and C18 : 1ω12t; 54.3 %). Poly-β-hydroxybutyrate granules are formed. On the basis of phenotypic and genotypic properties and phylogenetic distinctiveness, strain MJ17T should be classified in a novel species of the genus Paracoccus, for which the name Paracoccus caeni sp. nov. is proposed. The type strain is MJ17T ( = KCTC 22480T  = JCM 16385T  = KEMB 9004-001T).


2005 ◽  
Vol 55 (5) ◽  
pp. 2101-2104 ◽  
Author(s):  
Kouta Hatayama ◽  
Hirofumi Shoun ◽  
Yasuichi Ueda ◽  
Akira Nakamura

Four thermophilic, Gram-positive strains, designated H0165T, 500275T, C0170 and 700375, were isolated from a composting process in Japan. The isolates grew aerobically at about 65 °C on a solid medium with formation of substrate mycelia; spores were produced singly along the mycelia. These morphological characters resembled those of some type strains of species belonging to the family ‘Thermoactinomycetaceae’, except that aerial mycelia were not formed. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the closest related species to the isolates were members of the family ‘Thermoactinomycetaceae’, but that the isolates formed an independent phylogenetic lineage. Some chemotaxonomic characters of the isolates, such as DNA G+C contents of 58·7–60·3 mol%, MK-7 as the major menaquinone and cellular fatty acid profiles, differed from those of members of the family ‘Thermoactinomycetaceae’. DNA–DNA hybridization showed that the isolates could be divided into two genomic groups, strain H0165T and the other three strains. These results indicated that the four isolates should be classified into two species of a novel genus in the family ‘Thermoactinomycetaceae’, for which the names Planifilum fimeticola gen. nov., sp. nov. (type strain H0165T=ATCC BAA-969T=JCM 12507T) and Planifilum fulgidum sp. nov. (type strain 500275T=ATCC BAA-970T=JCM 12508T) are proposed.


2007 ◽  
Vol 57 (2) ◽  
pp. 265-269 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

Two Gram-negative, chemoheterotrophic, non-motile strains, Mok-1-36T and MAOS-86T, were isolated from marine-sediment samples collected from the coasts of Okinawa island and the city of Odawara in Japan, respectively. Phylogenetic studies based on 16S rRNA gene sequences indicated that Mok-1-36T and MAOS-86T were members of the family Flavobacteriaceae, clustering with members of the genera Ulvibacter and Vitellibacter, respectively. Strains Mok-1-36T and MAOS-86T shared pairwise 16S rRNA gene sequence similarities of 93.5 and 89.1 % with the type strains of Ulvibacter litoralis and Vitellibacter vladivostokensis, respectively. Phylogenetic distinctiveness and phenotypic differences from their phylogenetic neighbours indicated that these strains represent two novel species and genera within the family Flavobacteriaceae, for which the names Sediminibacter furfurosus gen. nov., sp. nov. (MAOS-86T) and Gilvibacter sediminis gen. nov., sp. nov. (Mok-1-36T) are proposed. The type strain of Sediminibacter furfurosus is MAOS-86T (=NBRC 101622T=CIP 109285T) and the type strain of Gilvibacter sediminis is Mok-1-36T (=NBRC 101626T=CIP 109286T).


2011 ◽  
Vol 61 (10) ◽  
pp. 2338-2341 ◽  
Author(s):  
Yan-Jiao Zhang ◽  
Xi-Ying Zhang ◽  
Zi-Hao Mi ◽  
Chun-Xiao Chen ◽  
Zhao-Ming Gao ◽  
...  

A Gram-negative, motile, psychrotolerant, oxidase- and catalase-positive bacterium, designated BSs20135T, was isolated from Arctic marine sediment. Cells were straight or slightly curved rods and formed circular, convex and yellowish-brown colonies. Buds and prosthecae could be produced. The strain grew at 4–28 °C (optimum 25 °C) and with 1–5 % (w/v) NaCl (optimum 2 %) and hydrolysed aesculin and DNA, but did not reduce nitrate to nitrite. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain BSs20135T belonged to the genus Glaciecola and shared 93.6–97.7 % sequence similarity with the type strains of known species of the genus Glaciecola. The major cellular fatty acids of strain BSs20135T were summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0, C17 : 1ω8c and C18 : 1ω7c. The genomic DNA G+C content was 40.3 mol%. Based on 16S rRNA gene sequence analysis, DNA–DNA hybridization data and phenotypic and chemotaxonomic characterization, strain BSs20135T represents a novel species, for which the name Glaciecola arctica sp. nov. is proposed. The type strain is BSs20135T ( = CCTCC AB 209161T  = KACC 14537T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2609-2612 ◽  
Author(s):  
Núria Bozal ◽  
M. Jesús Montes ◽  
Elena Mercadé

Two Gram-negative, cold-adapted, aerobic bacteria, designated strains M8T and M6, were isolated from soil collected from the South Shetland Islands. The organisms were rod-shaped, catalase- and oxidase-positive and motile by means of polar flagella. These two psychrotolerant strains grew between −4 and 30 °C. 16S rRNA gene sequence analysis placed strains M8T and M6 within the genus Pseudomonas. DNA–DNA hybridization experiments between the Antarctic isolate M8T and type strains of phylogenetically related species, namely Pseudomonas peli and Pseudomonas anguilliseptica, revealed levels of relatedness of 33 and 37 %, respectively. Strain M6 showed 99 % DNA similarity to strain M8T. Several phenotypic characteristics, together with data on cellular fatty acid composition, served to differentiate strains M8T and M6 from related pseudomonads. On the basis of the polyphasic taxonomic evidence presented in this study, it can be concluded that strains M8T and M6 belong to the same genospecies, representing a novel species of the genus Pseudomonas, for which the name Pseudomonas guineae sp. nov. is proposed. The type strain is M8T (=LMG 24016T=CECT 7231T).


Sign in / Sign up

Export Citation Format

Share Document