scholarly journals Hymenobacter kanuolensis sp. nov., a novel radiation-resistant bacterium

2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 2108-2112 ◽  
Author(s):  
Shiyou Su ◽  
Ming Chen ◽  
Chao Teng ◽  
Shijie Jiang ◽  
Chen Zhang ◽  
...  

A Gram-reaction-negative, rod-shaped, non-motile, red-pigmented, radiation-resistant, aerobic bacterium designated T-3T was isolated from a soil sample from the Qinghai–Tibet Plateau in Tibet, China, after exposure to 10 kGy gamma radiation. Phylogenetic analysis based on 16S rRNA sequences indicated that this isolate represented a novel member of the genus Hymenobacter . Sequence identities of the 16S rRNA gene of strain T-3T with the type strains of species of the genus Hymenobacter with validly published names range from 89 % to 97 %, and the most closely related species is Hymenobacter psychrotolerans Tibet-IIU11T (97 %). The DNA–DNA relatedness between strain T-3T and H. psychrotolerans is 59.10 %. The major fatty acids of strain T-3T were iso-C15 : 0 (27.66 %), summed feature 4 (iso-C17 : 1I and/or anteiso-C17 : 1B, 15.84 %), anteiso-C15 : 0 (14.08 %) and summed feature 3 (C16 : 1ω7c and/orC16 : 1ω6c, 12.38 %). The major menaquinone of strain T-3T was MK-7. Phosphatidylethanolamine (PE) was predominant in the polar lipid profile. The G+C content of the DNA of strain T-3T was 69.17 mol%. On the basis of the results of the polyphasic characterization presented in this study, it is concluded that strain T-3T represents a novel species of the genus Hymenobacter , for which the name Hymenobacter kanuolensis is proposed. The type strain is T-3T ( = ACCC 05760T = KCTC 32407T).

2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3341-3345 ◽  
Author(s):  
Jia-Fa Wu ◽  
Jie Li ◽  
Zhi-Qing You ◽  
Si Zhang

A novel Gram-stain-positive actinobacterium, designated strain SCSIO 11529T, was isolated from tissues of the stony coral Galaxea fascicularis, and characterized by using a polyphasic approach. The temperature range for growth was 22–50 °C (optimum 28–45 °C), the pH range for growth was 6.0–8.0 (optimum pH 7.0), and the NaCl concentration range for growth was 0–7 % (w/v) NaCl. The polar lipid profile contained diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and an unknown polar lipid. The predominant menaquinone was MK-9(H4). The major fatty acids (>10 %) were iso-C16 : 0, iso-C17 : 1ω6c, iso-C16 : 1 H and C16 : 1ω7c/iso-C15 : 0 2-OH. The DNA G+C content of strain SCSIO 11529T was 70.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SCSIO 11529T belongs to the genus Prauserella , with the closest neighbours being Prauserella marina MS498T (97.0 % 16S rRNA gene sequence similarity), Prauserella rugosa DSM 43194T (96.4 %) and Prauserella flava YIM 90630T (95.9 %). Based on the evidence of the present study, strain SCSIO 11529T is considered to represent a novel species of the genus Prauserella , for which the name Prauserella coralliicola sp. nov. is proposed. The type strain is SCSIO 11529T ( = DSM 45821T = NBRC 109418T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 754-759 ◽  
Author(s):  
Paulina Corral ◽  
Angela Corcelli ◽  
Antonio Ventosa

An extremely haloalkaphilic archaeon, strain T26T, belonging to the genus Halostagnicola , was isolated from sediment of the soda lake Bange in the region of Tibet, China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain T26T was closely related to Halostagnicola alkaliphila 167-74T (98.4 %), Halostagnicola larsenii XH-48T (97.5 %) and Halostagnicola kamekurae 194-10T (96.8 %). Strain T26T grew optimally in media containing 25 % (w/v) salts, at pH 9.0 and 37 °C in aerobic conditions. Mg2+ was not required for growth. The cells were motile, pleomorphic and Gram-stain-variable. Colonies of this strain were pink pigmented. Hypotonic treatment caused cell lysis. The polar lipids of the isolate consisted of C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and minor phospholipids components. Glycolipids were not detected, in contrast to the two neutrophilic species of this genus. The genomic DNA G+C content of strain T26T was 60.1 mol% and DNA–DNA hybridization showed a relatedness of 19 and 17 % with Halostagnicola alkaliphila CECT 7631T and Halostagnicola larsenii CECT 7116T, respectively. The comparison of 16S rRNA gene sequences, detailed phenotypic characterization, polar lipid profile and DNA–DNA hybridization studies revealed that strain T26T belongs to the genus Halostagnicola , and represents a novel species for which the name Halostagnicola bangensis sp. nov. is proposed. The type strain is T26T ( = CECT 8219T = IBRC-M 10759T = JCM 18750T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5287-5295 ◽  
Author(s):  
Yajun Ge ◽  
Yuanmeihui Tao ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four unknown strains belonging to the genus Arthrobacter were isolated from plateau wildlife on the Qinghai–Tibet Plateau of PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four isolates were separated into two clusters. Cluster I (strains 785T and 208) had the greatest 16S rRNA gene sequence similarity to Arthrobacter citreus (98.6 and 98.7 %, respectively), Arthrobacter luteolus (98.0 and 98.1%, respectively), Arthrobacter gandavensis (97.9 and 98.0 %, respectively) and Arthrobacter koreensis (97.6 and 97.7 %, respectively). Likewise, cluster II (strains J391T and J915) had the highest sequence similarity to Arthrobacter ruber (98.6 and 98.3 %, respectively) and Arthrobacter agilis (98.1 and 97.9  %, respectively). Average nucleotide identity and the digital DNA–DNA hybridization values illustrated that the two type strains, 785T and J391T, represented two separate novel species that are distinct from all currently recognized species in the genus Arthrobacter . These strains had DNA G+C contents of 66.0–66.1 mol% (cluster I) and 68.0 mol% (cluster II). The chemotaxonomic properties of strains 785T and J391T were in line with those of the genus Arthrobacter : anteiso-C15:0 (79.3 and 40.8 %, respectively) as the major cellular fatty acid, MK-8(H2) (65.8 %) or MK-9(H2) (75.6 %) as the predominant respiratory quinone, a polar lipid profile comprising diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycolipids and phospholipid, and A3α or A4α as the cell wall peptidoglycan type. On the basis of our results, two novel species in the genus Arthrobacter are proposed, namely Arthrobacter yangruifuii sp. nov. (type strain, 785T=CGMCC 1.16725T=GDMCC 1.1592T=JCM 33491T) and Arthrobacter zhaoguopingii sp. nov. (type strain, J391T=CGMCC 1.17382T=GDMCC 1.1667T=JCM 33841T).


Author(s):  
Xiaoya Peng ◽  
Yumin Zhang ◽  
Yijing Lu ◽  
Xueyin Zhou ◽  
Zhourui Wei ◽  
...  

A rod-shaped, yellow-pigmented, Gram-stain-negative, non-motile and aerobic bacterium, designated 7-3AT, was isolated from soil from King George Island, maritime Antarctica, and subjected to a polyphasic taxonomic study. Growth occurred at 4–37 °C (optimum, 20°C) and at pH 5.0–9.0 (optimum, pH 7.0–8.0). Tolerance to NaCl was up to 4 % (w/v) with optimum growth in the absence of NaCl. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 7-3AT represented a member of the family Flavobacteriaceae . Strain 7-3AT showed the highest sequence similarities with Kaistella yonginensis HMD 1043T (96.65 %), Kaistella carnis NCTC 13525T (96.53 %), Kaistella chaponensis DSM 23145T (96.27 %), Kaistella antarctica LMG 24720T (96.13 %) and Kaistella jeonii DSM 17048T (96.06 %). A whole genome-level comparison of 7-3AT with K. jeonii DSM 17048T, K. antarctica LMG 24720T, K. chaponensis DSM 23145T, and Kaistella palustris DSM 21579T revealed average nucleotide identity (ANI) values of 79.03, 82.25, 78.12, and 74.42 %, respectively. The major respiratory isoprenoid quinone was identified as MK-6 and a few ubiquinones Q-10 were identified. In addition, flexirubin-type pigments were absent. The polar lipid profile of 7-3AT was found to contain one phosphatidylethanolamine, six unidentified aminolipids (AL) and two unidentified lipids (L). The G+C content of the genomic DNA was determined to be 34.54 mol%. The main fatty acids were iso-C15 : 0, summed feature 9 (comprising iso-C17 : 1ω9c and/or C16 : 0 10-methyl), anteiso-C15 : 0, iso-C13 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). On the basis of the evidence presented in this study, a novel species of the genus Kaistella , Kaistella flava sp. nov., is proposed, with the type strain 7-3AT (=CCTCC AB 2016141T= KCTC 52492T). Emended descriptions of Kaistella yonginensis , Kaistella jeonii , Kaistella antarctica and Kaistella chaponensis are also given.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3768-3774 ◽  
Author(s):  
Naysim LO ◽  
Hyo Jung Kang ◽  
Che Ok Jeon

A Gram-staining-negative, facultatively aerobic bacterium, designated SM-2T, was isolated from a sea-tidal flat of Yellow Sea, South Korea. Cells were catalase- and oxidase-positive motile rods with a single polar flagellum. Growth of strain SM-2T was observed at 10–37 °C (optimum, 25–30 °C), at pH 5.5–8.5 (optimum, pH 7.0–7.5) and in the presence of 0–11 % (w/v) NaCl (optimum, 2 %). Strain SM-2T contained ubiquinone-8 (Q-8) as the sole isoprenoid quinone and C17 : 1ω8c, summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH), C17 : 0 and C18 : 1ω7c as the major fatty acids. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified lipid were identified as the major cellular polar lipids. The G+C content of the genomic DNA was 52.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SM-2T formed a tight phyletic lineage with Zhongshania antarctica ZS5-23T, Zhongshania guokunii ZS6-22T and Spongiibacter borealis CL-AS9T, but that S. borealis CL-AS9T was distinct from other species of the genus Spongiibacter . Based on 16S rRNA gene sequence similarities, strain SM-2T was most closely related to S. borealis CL-AS9T, Z. antarctica ZS5-23T and Z. guokunii ZS6-22T, with similarities of 99.5 %, 98.9 % and 98.7 %, respectively, but the DNA–DNA hybridization values among these species were clearly lower than 70 %. On the basis of chemotaxonomic data and molecular properties, we propose strain SM-2T represents a novel species of the genus Zhongshania with the name Zhongshania aliphaticivorans sp. nov. (type strain SM-2T = KACC 18120T = JCM 30138T). We also propose the transfer of Spongiibacter borealis Jang et al. 2011 to the genus Zhongshania as Zhongshania borealis comb. nov. (type strain CL-AS9T = KCCM 90094T = JCM 17304T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 971-976 ◽  
Author(s):  
Sang Hyeon Jeong ◽  
Hyun Mi Jin ◽  
Hyo Jung Lee ◽  
Che Ok Jeon

A Gram-stain-negative, ochre-pigmented, strictly aerobic bacterium, designated strain KJ7T, was isolated from a tidal flat of the Gangjin bay in South Korea. Cells were halotolerant, non-motile, catalase- and oxidase-positive rods. Growth of strain KJ7T was observed at 5–35 °C (optimum, 25 °C), at pH 6.0–9.5 (optimum, pH 6.5–7.0) and in the presence of 0–9 % (w/v) NaCl (optimum, 2 %). The major cellular fatty acids were C18 : 1ω7c, C17 : 1ω6c, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The polar lipid pattern indicated the presence of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, a sphingoglycolipid, an unidentified phospholipid and two unidentified lipids. The G+C content of the genomic DNA was 60.2±0.9 mol% and the predominant respiratory quinone was Q-10. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain KJ7T formed a phyletic lineage distinct from other members of the genus Altererythrobacter and was most closely related to Altererythrobacter luteolus SW-109T and Altererythrobacter namhicola KYW48T (95.6 and 95.0 % 16S rRNA gene sequence similarity, respectively). On the basis of phenotypic, chemotaxonomic and molecular features, strain KJ7T represents a novel species of the genus Altererythrobacter , for which the name Altererythrobacter gangjinensis sp. nov. is proposed. The type strain is KJ7T ( = KACC 16190T = JCM 17802T).


Author(s):  
Ye Lin Seo ◽  
Jaejoon Jung ◽  
Chi-une Song ◽  
Yong Min Kwon ◽  
Hye Su Jung ◽  
...  

A Gram-stain-negative, orange-pigmented and strictly aerobic bacterium, designated strain MJ115T, was isolated from seawater in Pohang, South Korea. Cells were non-motile rods and showed positive reactions for catalase and oxidase tests. Growth of strain MJ115T was observed at 4–35 °C (optimum, 30 °C), pH 6.0–7.0 (optimum, pH 6.5) and in the presence of 0–8.0 % (w/v) NaCl (optimum, 2.0%). Strain MJ115T contained iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 1  ω9c, C17 : 0 2-OH, iso-C16 : 0 3-OH, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) as major cellular fatty acids and menaquinone-6 as the major respiratory quinone. Phosphatidylethanolamine, two unidentified aminolipids and four unidentified lipids were detected as major polar lipids. The G+C content of the genomic DNA was 40.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MJ115T formed a phyletic lineage with Nonlabens marinus S1-08T, Nonlabens agnitus JC2678T and Nonlabens antarcticus AKS 622T within the genus Nonlabens . Strain MJ115T was also most closely related to N. marinus S1-08T, N. agnitus JC2678T and N. antarcticus AKS 622T with 96.5, 96.4 and 96.0 % 16S rRNA sequence similarities, respectively. Here it is proposed that strain MJ115T represents a new species of the genus Nonlabens , for which the name Nonlabens ponticola sp. nov. is proposed. The type strain is MJ115T (=KCTC 72237T=NBRC 113963T). In addition, the comparison of the whole genome sequences and phenotypic features suggested that Nonlabens tegetincola and Nonlabens sediminis belong to the same species. Therefore, it is proposed that N. sediminis is reclassified as a later heterotypic synonym of N. tegetincola .


2020 ◽  
Vol 70 (9) ◽  
pp. 5012-5018 ◽  
Author(s):  
Hui Zhao ◽  
Yinan Ma ◽  
Xiaogang Wu ◽  
Liqun Zhang

A Gram-stain-negative aerobic bacterium, strain 11K1T, was isolated from a rhizosphere soil of broad bean collected from Qujing, Yunnan, PR China and characterized by using polyphasic taxonomy. The bacterial cells of strain 11K1T were rod-shaped, motile by two polar flagella and positive for oxidase and catalase. Results of phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain had the highest similarities to Pseudomonas thivervalensis DSM 13194T (99.52 %), Pseudomonas lini CFBP 5737T (99.45 %), Pseudomonas chlororaphis subsp. chlororaphi s NBRC 3904T (99.31 %), Pseudomonas kilonensis DSM 13647T (99.25 %) and Pseudomonas brassicacearum JCM11938T (99.24 %). Multilocus sequence analysis using the 16S rRNA, gyrB, rpoB and rpoD gene sequences demonstrated that strain 11K1T was a member of the Pseudomonas corrugata subgroup within the Pseudomonas fluorescens lineage, but was distant from all closely related species. The average nucleotide identity and in silico DNA–DNA hybridization values were lower than recommended thresholds of 95 and 70 %, respectively, for species delineation. The major isoprenoid quinone of strain 11K1T was ubiquinone (Q-9) and the major cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) and C17 : 0 cyclo. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid and two unidentified lipids. Based on the results of phenotypic characterization, phylogenetic analysis and genome comparison, strain 11K1T represents a novel species of the genus Pseudomonas , for which the name Pseudomonas viciae sp. nov. is proposed. The type strain is 11K1T (=GDMCC 1.1743T=KACC 21650T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2204-2210 ◽  
Author(s):  
Zhi Tian ◽  
Shan Lu ◽  
Dong Jin ◽  
Jing Yang ◽  
Ji Pu ◽  
...  

Two Gram-stain-positive, catalase-positive and oxidase-negative, aerobic, non-motile, cellobiose-utilizing, short-rod-shaped strains (Z28T and Z29) were isolated from faeces of Tibetan antelope (Pantholops hodgsonii) collected on the Qinghai–Tibet Plateau. Strain Z28T shared 98.1, 98.0, 97.8 and 97.4 % 16S rRNA gene similarity, 24.1, 22.8, 23.2 and 26.3 % digital DNA–DNA hybridization relatedness and 80.8, 80.0, 80.7 and 80.9 % average nucleotide identity values with Cellulomonas oligotrophica DSM 24482T, Cellulomonas flavigena DSM 20109T, Cellulomonas iranensis DSM 14785T and Cellulomonas terrae JCM 14899T, respectively. Results from further phylogenetic analyses based on the 16S rRNA gene and 148 core genes indicated that strains Z28T and Z29 were closest to C. oligotrophica DSM 24482T and C. flavigena DSM 20109T, but clearly separated from the currently recognized species of the genus Cellulomonas . The genomic DNA G+C content of strain Z28T was 75.3 mol%. The major cellular fatty acids were anteiso-C15 : 0, anteiso-C15 : 1 A, C16 : 0 and anteiso-C17 : 0. Ribose and mannose were detected as the whole-cell sugars. The major respiratory quinone was MK-9(H4) and ornithine was the diamino acid of the cell wall. The polar lipids present in strain Z28T were phosphatidylethanolamine, five phospholipids, two aminophospholipids, aminolipid and three unidentified lipids. Comparison of phenotypic and phylogenetic features between the two strains and the related organisms revealed that Z28T and Z29 represent a novel species of the genus Cellulomonas , for which the name Cellulomonas shaoxiangyii sp. nov. is proposed. The type strain is Z28T (=CGMCC 1.16477T=DSM 106200T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3323-3327 ◽  
Author(s):  
Qian Wang ◽  
Sheng-Dong Cai ◽  
Jie Liu ◽  
De-Chao Zhang

The Gram-strain-negative, rod-shaped, facultatively anaerobic, non-motile bacterial strain, designated S1-10T, was isolated from marine sediment. Strain S1-10T grew at 4–42 °C (optimally at 30–35 °C), at pH 7.0–10 (optimally at pH 9) and in the presence of 0.5–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S1-10T was related to the genus Aequorivita and had highest 16S rRNA gene sequence similarity to Aequorivita viscosa 8-1bT (97.7%). The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The main respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G+C content of strain S1-10T was 34.6 mol%. The polar lipid profile of strain S1-10T contained phosphatidylethanolamine, two aminolipids, two glycolipids, one phosphoglycolipid and three unidentified polar lipids. In addition, the maximum values of in silico DNA–DNA hybridization (isDDH) and average nucleotide identity (ANI) between strain S1-10T and A. viscosa CGMCC 1.11023T were 15.4 and 75.7 %, respectively. Combined data from phenotypic, phylogenetic, isDDH and ANI analyses demonstrated that strain S1-10T is the representative of a novel species of the genus Aequorivita , for which we propose the name Aequorivita sinensis sp. nov. (type strain S1-10T=CGMCC 1.12579T=JCM 19789T). We also propose that Vitellibacter todarodis and Vitellibacter aquimaris should be transferred into genus Aequorivita and be named Aequorivita todarodis comb. nov. and Aequorivita aquimaris comb. nov., respectively. The type strain of Aequorivita todarodis comb. nov. is MYP2-2T (= KCTC 62141T= NBRC 113025T) and the type strain of Aequorivita aquimaris comb. nov. is D-24T (=KCTC 42708T=DSM 101732T).


Sign in / Sign up

Export Citation Format

Share Document