scholarly journals Roseomonas aquatica sp. nov., isolated from drinking water

2006 ◽  
Vol 56 (10) ◽  
pp. 2291-2295 ◽  
Author(s):  
Virginia Gallego ◽  
Cristina Sánchez-Porro ◽  
Maria Teresa García ◽  
Antonio Ventosa

Strain TR53T, a Gram-negative, non-motile, non-spore-forming and strictly aerobic coccobacillus, isolated from the drinking water distribution system of Seville, Spain, was subjected to polyphasic taxonomic analysis using a combination of phenotypic, genotypic and phylogenetic features. Phylogenetic analysis of 16S rRNA gene sequences showed that strain TR53T had highest similarity to members of the genus Roseomonas, with sequence similarity values between 95.7 % (to Roseomonas genomospecies 5 strain ATCC 49960) and 94.0 % (to Roseomonas gilardii subsp. rosea ATCC 49956T). On the basis of its phenotypic characteristics, 16S rRNA gene sequence data and DNA G+C content (68.6 mol%), strain TR53T represents a novel species of the genus Roseomonas, for which the name Roseomonas aquatica sp. nov. is proposed. The type strain of Roseomonas aquatica is TR53T (=CECT 7131T=JCM 13556T).

2006 ◽  
Vol 56 (2) ◽  
pp. 339-342 ◽  
Author(s):  
Virginia Gallego ◽  
Maria Teresa García ◽  
Antonio Ventosa

A pink-pigmented, facultatively methylotrophic strain, AR27T, isolated from the drinking water distribution system of Seville, Spain, was characterized taxonomically. Cells were Gram-negative rods, motile, non-spore-forming and strictly aerobic. Growth in liquid media was flocculant whereas on solid media growth produced colonies that usually adhered to the agar surface. On the basis of its phenotypic characteristics, 16S rRNA gene sequence data and DNA G+C content (63·6 mol%), strain AR27T (=CECT 7069T=CCM 7305T) is proposed as the type strain of a novel species of the genus Methylobacterium, Methylobacterium adhaesivum sp. nov.


2006 ◽  
Vol 56 (7) ◽  
pp. 1589-1592 ◽  
Author(s):  
Virginia Gallego ◽  
Maria Teresa García ◽  
Antonio Ventosa

Strain VP48T was isolated from drinking water during a screening programme to monitor the bacterial population present in the water distribution system of Sevilla (Spain). A polyphasic taxonomic study of the isolate resulted in its identification as a member of the genus Chryseobacterium, members of which are widely distributed in soil, water and clinical sources. However, the 16S rRNA gene sequence similarity values of strain VP48T to the type strains of Chryseobacterium species were 96 % or lower. Furthermore, phenotypic characteristics clearly indicated that the isolate represents a novel Chryseobacterium species, for which the name Chryseobacterium hispanicum sp. nov. is proposed; strain VP48T (=CECT 7129T=CCM 7359T=JCM 13554T) is the type strain. The DNA G+C content of this strain is 34.3 mol%.


2006 ◽  
Vol 56 (8) ◽  
pp. 1853-1858 ◽  
Author(s):  
Virginia Gallego ◽  
Maria Teresa García ◽  
Antonio Ventosa

A Gram-negative, rod-shaped, non-spore-forming bacterium (strain AR107T) was isolated from the drinking water distribution system of Seville (Spain). A polyphasic taxonomic study of the isolate resulted in its identification as a member of the genus Pedobacter. On the basis of 16S rRNA gene sequence comparisons, strain AR107T was shown to belong to the phylum Bacteroidetes, being related to members of the genus Pedobacter. It showed 95.2 % sequence similarity with respect to the type strains of Pedobacter heparinus and Pedobacter piscium, and 94.1 % similarity with respect to the type strain of Pedobacter himalayensis. The predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), which supports the affiliation of strain AR107T to the genus Pedobacter. The DNA G+C content of this strain was 38 mol%. On the basis of the phenotypic, phylogenetic and genotypic results, strain AR107T represents a novel species, for which the name Pedobacter aquatilis sp. nov. is proposed. The type strain is AR107T (=CCM 7347T=CECT 7114T=JCM 13454T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Tristan Barbeyron ◽  
Yannick Lerat ◽  
Jean-François Sassi ◽  
Sophie Le Panse ◽  
William Helbert ◽  
...  

A rod shaped, Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, non-gliding bacterium, designated strain PLRT, was isolated from faeces of the mollusc Aplysia punctata (Mollusca, Gastropoda) that had been fed with green algae belonging to the genus Ulva. The novel strain was able to degrade ulvan, a polysaccharide extracted from green algae (Chlorophyta, Ulvophyceae). The taxonomic position of strain PLRT was investigated by using a polyphasic approach. Strain PLRT was dark orange, oxidase-positive, catalase-positive and grew optimally at 25 °C, at pH 7.5 and in the presence of 2.5 % (w/v) NaCl with an oxidative metabolism using oxygen as the electron acceptor. Nitrate could not be used as the electron acceptor. Strain PLRT had a Chargaff’s coefficient (DNA G+C content) of 35.3 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene placed the novel strain in the family Flavobacteriaceae (phylum ‘Bacteroidetes’), within a clade comprising Stenothermobacter spongiae, Nonlabens tegetincola, Sandarakinotalea sediminis, Persicivirga xylanidelens and Persicivirga dokdonensis. The closest neighbours of strain PLRT were P. xylanidelens and P. dokdonensis, sharing 95.2 and 95.5 % 16S rRNA gene sequence similarity, respectively. Phylogenetic inference and differential phenotypic characteristics demonstrated that strain PLRT represents a novel species of the genus Persicivirga, for which the name Persicivirga ulvanivorans sp. nov. is proposed. The type strain is PLRT ( = CIP 110082T = DSM 22727T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2377-2381 ◽  
Author(s):  
Xiang He ◽  
Ting Xiao ◽  
Haiju Kuang ◽  
Xiaojun Lan ◽  
Maripat Tudahong ◽  
...  

A Gram-staining-negative, yellow-coloured, strictly aerobic, non-spore-forming, rod-shaped bacterium, designated HS39T, isolated from a soil sample collected from a natural Populus euphratica forest in Xinjiang, China, was characterized using a polyphasic approach. The isolate grew optimally at 30–37 °C, at pH 6.5–8.0 and with 0–3 % NaCl. Analysis of the 16S rRNA gene sequence of strain HS39T revealed that it is a member of the genus Sphingobacterium. Sphingobacterium mizutaii ATCC 33299T was the nearest relative (94.0 % 16S rRNA gene sequence similarity). The G+C content of the genomic DNA was 40.2 mol%. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1 ω6c and/or C16 : 1 ω7c). The predominant isoprenoid quinone was MK-7. On the basis of phenotypic properties and phylogenetic inference, strain HS39T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium shayense sp. nov. is proposed. The type strain is HS39T (=CCTCC AB 209006T =NRRL B-59203T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 668-674 ◽  
Author(s):  
Xiaoyang Fan ◽  
Tong Yu ◽  
Zhao Li ◽  
Xiao-Hua Zhang

Three Gram-stain-negative, strictly aerobic, rod-shaped with single polar flagellum, yellow-pigmented bacteria, designated strains XH031T, XH038-3 and XH80-1, were isolated from deep-sea sediment of the South Pacific Gyre (41° 51′ S 153° 6′ W) during the Integrated Ocean Drilling Program (IODP) Expedition 329. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates belonged to the genus Luteimonas and showed the highest 16S rRNA gene sequence similarity with Luteimonas aestuarii B9T (96.95 %), Luteimonas huabeiensis HB2T (96.93 %) and Xanthomonas cucurbitae LMG 690T (96.92 %). The DNA G+C contents of the three isolates were 70.2–73.9 mol%. The major fatty acids were iso-C15 : 0, iso-C16 : 0, iso-C11 : 0 and C16 : 010-methyl and/or iso-C17 : 1ω9c. The major respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and one unknown phospholipid. On the basis of data from polyphasic analysis, the three isolates represent a novel species of the genus Luteimonas , for which the name Luteimonas abyssi sp. nov. is proposed. The type strain is XH031T ( = DSM 25880T = CGMCC 1.12611T).


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2851-2857 ◽  
Author(s):  
Jina Lee ◽  
Tae Woong Whon ◽  
Na-Ri Shin ◽  
Seong Woon Roh ◽  
Jandi Kim ◽  
...  

A slightly halophilic, Gram-negative, strictly aerobic, non-motile rod, designated TW15T, was isolated from an ark clam in South Korea. Growth occurred at 10–37 °C, with 1–5 % (w/v) NaCl and at pH 7.0–10.0. Optimal growth occurred at 25–30 °C, with 2 % (w/v) NaCl and at pH 8.0. Strain TW15T exhibited both oxidase and catalase activities. The major fatty acids of strain TW15T were summed feature 8 (consisting of C18 : 1ω7c and/or C18 : 1ω6c) and 11-methyl C18 : 1ω7c. The predominant isoprenoid quinone was ubiquinone-10 (Q-10). The polar lipids of strain TW15T comprised phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and five unidentified lipids. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain TW15T was most closely related to Ruegeria lacuscaerulensis DSM 11314T (98.0 % 16S rRNA gene sequence similarity). DNA–DNA relatedness with closely related strains was <52±3 %. The DNA G+C content was 55.7 mol%. On the basis of phenotypic, genotypic and phylogenetic data, strain TW15T represents a novel species of the genus Ruegeria , for which the name Ruegeria conchae sp. nov. is proposed. The type strain is TW15T ( = KACC 15115T  = JCM 17315T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 703-708 ◽  
Author(s):  
Dong-Heon Lee ◽  
Sun Ja Cho ◽  
Suk Min Kim ◽  
Sun Bok Lee

A novel bacterium, designated strain F051-1T, isolated from a seawater sample collected from the coast at Damupo beach in Pohang, Korea, was investigated in a polyphasic taxonomic study. Cells were yellow-pigmented, strictly aerobic, Gram-staining-negative and rod-shaped. The temperature, pH and NaCl ranges for growth were 4–30 °C, pH 6.0–9.0 and 1.0–6.0 % (w/v), respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F051-1T belongs to the genus Psychroserpens in the family Flavobacteriaceae . Its closest relatives were Psychroserpens burtonensis ACAM 188T (96.8 % 16S rRNA gene sequence similarity) and Psychroserpens mesophilus KOPRI 13649T (95.7 %). The major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G and anteiso-C15 : 0. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, two unidentified aminolipids, one unidentified phospholipid and eight unidentified lipids. The major respiratory quinone was menaquinone-6 and the genomic DNA G+C content of the strain was 33.5 mol%. On the basis of phenotypic, phylogenetic and genotypic data, strain F051-1T represents a novel species within the genus Psychroserpens , for which the name Psychroserpens damuponensis sp. nov. is proposed. The type strain is F051-1T ( = KCTC 23539T  = JCM 17632T).


2010 ◽  
Vol 60 (2) ◽  
pp. 382-386 ◽  
Author(s):  
Byoung-Jun Yoon ◽  
Dong-Heon Lee ◽  
Bong-Jo Kang ◽  
Hyung-Yeel Kahng ◽  
You-Sung Oh ◽  
...  

A novel marine, Gram-staining-negative, yellow-pigmented, rod-shaped bacterial strain, designated CNU004T, was isolated from a seawater sample collected on the coastline of Jeju Island, South Korea. The strain was strictly aerobic, non-flagellated, non-gliding and oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CNU004T belongs to a distinct lineage in the family Flavobacteriaceae. Strain CNU004T exhibited levels of 16S rRNA gene sequence similarity of 93.8–93.9 % to its nearest phylogenetic neighbours, members of the genera Gaetbulibacter, Yeosuana and Algibacter. The new isolate required sea salts or artificial seawater for growth. The optimum ranges of temperature and pH for growth were 30–35 °C and pH 7.0–8.0. The DNA G+C content of strain CNU004T was 37.7 mol%. The major fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and iso-C15 : 0 3-OH. Menaquinone-6 was the major respiratory quinone. Zeaxanthin was the major carotenoid pigment produced, and flexirubin-type pigments were not produced. Strain CNU004T was able to degrade starch and agar. Based on its phenotypic and genotypic characteristics and on the phylogenetic evidence presented, strain CNU004T is considered to represent a novel species of a new genus in the family Flavobacteriaceae, for which the name Hyunsoonleella jejuensis gen. nov., sp. nov. is proposed. The type strain of Hyunsoonleella jejuensis sp. nov. is CNU004T (=KCTC 22242T =DSM 21035T).


2010 ◽  
Vol 60 (3) ◽  
pp. 680-685 ◽  
Author(s):  
Gi Duk Bae ◽  
Chung Yeon Hwang ◽  
Hye Min Kim ◽  
Byung Cheol Cho

A Gram-negative, strictly aerobic bacterium, designated CL-ES53T, was isolated from surface water of the East Sea in Korea. Cells of strain CL-ES53T were short rods and motile by means of monopolar flagella. Strain CL-ES53T grew with 4–21 % NaCl (optimum 10 %) and at 5–40 °C (optimum 25 °C) and pH 5.2–8.8 (optimum pH 6.3–7.2). The major isoprenoid quinone was Q-8. The major fatty acids were C18 : 1 ω7c (42.0 %), C18 : 1 ω9c (14.8 %) and C14 : 0 (9.4 %). The genomic DNA G+C content was 64.9 mol%. Analysis of the 16S rRNA gene sequence of strain CL-ES53T revealed that it was a member of the genus Salinisphaera and most closely related to Salinisphaera shabanensis E1L3A T (96.9 % sequence similarity) and Salinisphaera hydrothermalis EPR70T (93.8 %). Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain CL-ES53T formed a robust cluster with S. shabanensis E1L3A T. Although the 16S rRNA gene sequence similarity between strain CL-ES53T and S. shabanensis E1L3A T was rather high (96.9 %), DNA–DNA relatedness between these strains was 12 %, suggesting that they represent genomically distinct species. Strain CL-ES53T was differentiated from S. shabanensis E1L3A T and S. hydrothermalis EPR70T on the basis of optimum temperature for growth and certain phenotypic characteristics. The phylogenetic analysis and physiological and chemotaxonomic data show that strain CL-ES53T should be classified in the genus Salinisphaera within a novel species, for which the name Salinisphaera dokdonensis sp. nov. is proposed. The type strain is CL-ES53T (=KCCM 90064T =DSM 19549T).


Sign in / Sign up

Export Citation Format

Share Document