scholarly journals Clostridium aciditolerans sp. nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment

2007 ◽  
Vol 57 (2) ◽  
pp. 311-315 ◽  
Author(s):  
Yong-Jin Lee ◽  
Christopher S. Romanek ◽  
Juergen Wiegel

An obligately anaerobic, spore-forming, moderately acid-tolerant bacterium, strain JW/YJL-B3T, was isolated from a sediment sample from a constructed wetland system receiving acid sulfate water. Based on 16S rRNA gene sequence analysis, the isolate belonged to the Firmicutes branch with Clostridium drakei SL1T (96.2 % gene sequence similarity) as its closest relative. The G+C content of the genomic DNA was 30.8 mol% (HPLC). Cells were straight to curved rods, 0.5–1.0 μm in diameter and 3.0–9.0 μm in length. The temperature range for growth was 20–45 °C, with an optimum around 35 °C. Growth was not detected below 18 °C or above 47 °C. The pH range for growth was broad, pH25 °C 3.8–8.9, with an optimum at 7.0–7.5. However at pH 4.5, the strain grew at 52 % of the optimal growth rate. The salinity range was 0–1.5 % NaCl (w/v). Strain JW/YJL-B3T utilized beef extract, Casamino acids, peptone, tryptone, arabinose, cellobiose, fructose, galactose, glucose, lactose, maltose, mannose, raffinose, ribose, sucrose, xylose, pyruvate, glutamate and inulin as a carbon and energy source. There were no indications of growth under aerobic or autotrophic conditions. The isolate produced acetate, butyrate and ethanol as fermentation end products from glucose. Based on these characteristics and other physiological properties, the isolate is placed into the novel taxon, Clostridium aciditolerans sp. nov., with strain JW/YJL-B3T (=DSM 17425T=ATCC BAA-1220T) as the type strain.

2020 ◽  
Vol 70 (10) ◽  
pp. 5586-5593 ◽  
Author(s):  
Ya Shen ◽  
Sheng-Chung Chen ◽  
Mei-Chin Lai ◽  
Hsing-Hua Huang ◽  
Hsiu-Hui Chiu ◽  
...  

A halotolerant, psychrotolerant and methylotrophic methanogen, strain SY-01T, was isolated from the saline Lake Tus in Siberia. Cells of strain SY-01T were non-motile, cocci and 0.8–1.0 µm in diameter. The only methanogenic substrate utilized by strain SY-01T was methanol. The temperature range of growth for strain SY-01T was from 4 to 40 °C and the optimal temperature for growth was 30 °C. The pH range of growth was from pH 7.2 to 9.0, with optimal growth at pH 8.0. The NaCl range of growth was 0–1.55 M with optimal growth at 0.51 M NaCl. The G+C content of the genome of strain SY-01T was 43.6 mol % as determined by genome sequencing. Phylogenetic analysis revealed that strain SY-01T was most closely related to Methanolobus zinderi SD1T (97.3 % 16S rRNA gene sequence similarity), and had 95.5–97.2 % similarities to other Methanolobus species with valid names. Genome relatedness between strain SY-01T and DSM 21339T was computed using average nucleotide identity and digital DNA–DNAhybridization, which yielded values of 79.7 and 21.7 %, respectively. Based on morphological, phenotypic, phylogenetic and genomic relatedness data presented here, it is evident that strain SY-01T represents a novel species of the genus Methanolobus , and the name Methanolobus halotolerans sp. nov. is proposed. The type strain is SY-01T (=BCRC AR10051T=NBRC 113166 T=DSM 107642T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4769-4775 ◽  
Author(s):  
Jeremy A. Dodsworth ◽  
John C. Ong ◽  
Amanda J. Williams ◽  
Alice C. Dohnalkova ◽  
Brian P. Hedlund

An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1T, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1T was enhanced in the presence of acetate, peptone or Casamino acids. Growth occurred at 70–85 °C with an optimum at 80 °C, at pH 6.50–7.75 with an optimum at pH 7.25, with 0.5–8 % oxygen with an optimum at 1–2 % and with ≤ 200 mM NaCl. The doubling time under optimal growth conditions was 1.3 h, with a final mean cell density of 6.2 ± 0.5 × 107 cells ml− 1. Non-motile, rod-shaped cells 1.4–2.4 × 0.4–0.6 μm in size occurred singly or in pairs. The major cellular fatty acids (>5 % of the total) were C20 : 1ω9c, C18 : 0, C16 : 0 and C20 : 0. Phylogenetic analysis of the GBS1T 16S rRNA gene sequence indicated an affiliation with Thermocrinis ruber and other species of the genus Thermocrinis, but determination of 16S rRNA gene sequence similarity ( ≤ 97.10 %) and in silico estimated DNA–DNA hybridization values ( ≤ 18.4 %) with the type strains of recognized Thermocrinis species indicate that the novel strain is distinct from described species. Based on phenotypic, genotypic and phylogenetic characteristics, a novel species, Thermocrinis jamiesonii sp. nov., is proposed, with GBS1T ( = JCM 19133T = DSM 27162T) as the type strain.


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 501-505 ◽  
Author(s):  
Jonathan Kennedy ◽  
Lekha Menon Margassery ◽  
Niall D. O’Leary ◽  
Fergal O’Gara ◽  
John Morrissey ◽  
...  

A Gram-stain-negative, rod-shaped, orange-coloured, catalase- and oxidase-positive, non-motile bacterium, designated strain 92VT, was isolated from the marine sponge Amphilectus fucorum, collected from Lough Hyne, County Cork, Ireland. 16S rRNA gene sequence analysis revealed that strain 92VT clustered with members of the family Flavobacteriaceae , the closest member being Aquimarina latercula NCIMB 1399T, with a gene sequence similarity of 97.5 %. Strain 92VT required seawater for growth with optimal growth occurring at 25 °C, at pH 6–7 and with 3 % (w/v) NaCl. MK-6 was the sole respiratory quinone present and the major fatty acids were iso-C17 : 0 3-OH, iso-C15 : 0, iso-C17 : 1ω9c and iso-C15 : 0 3-OH. The DNA G+C content was 36.1 mol%. Combined phenotypic differences and phylogenetic analysis indicate that strain 92VT represents a novel species of the genus Aquimarina , for which the name Aquimarina amphilecti sp. nov. is proposed. The type strain is 92VT ( = NCIMB 14723T = DSM 25232T).


2004 ◽  
Vol 54 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Costantino Vetriani ◽  
Mark D. Speck ◽  
Susan V. Ellor ◽  
Richard A. Lutz ◽  
Valentin Starovoytov

A thermophilic, anaerobic, chemolithoautotrophic bacterium was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at 9° 50′ N. Cells of the organism were Gram-negative, motile rods that were about 1·0 μm in length and 0·6 μm in width. Growth occurred between 60 and 80 °C (optimum at 75 °C), 0·5 and 4·5 % (w/v) NaCl (optimum at 2 %) and pH 5 and 7 (optimum at 5·5). Generation time under optimal conditions was 1·57 h. Growth occurred under chemolithoautotrophic conditions in the presence of H2 and CO2, with nitrate or sulfur as the electron acceptor and with concomitant formation of ammonium or hydrogen sulfide, respectively. Thiosulfate, sulfite and oxygen were not used as electron acceptors. Acetate, formate, lactate and yeast extract inhibited growth. No chemoorganoheterotrophic growth was observed on peptone, tryptone or Casamino acids. The genomic DNA G+C content was 54·6 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the organism was a member of the domain Bacteria and formed a deep branch within the phylum Aquificae, with Thermovibrio ruber as its closest relative (94·4 % sequence similarity). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the newly described genus Thermovibrio. The type strain is Thermovibrio ammonificans HB-1T (=DSM 15698T=JCM 12110T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2345-2350 ◽  
Author(s):  
Yusuke Kondo ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Yasuhiro Shimane ◽  
Masahiro Kamekura ◽  
...  

A Gram-stain-negative, non-motile, pleomorphic rod-shaped, orange–red-pigmented, facultatively aerobic and haloalkaliphilic archaeon, strain MK13-1T, was isolated from commercial rock salt imported from Pakistan. The NaCl, pH and temperature ranges for growth of strain MK13-1T were 3.0–5.2 M NaCl, pH 8.0–11.0 and 15–50 °C, respectively. Optimal growth occurred at 3.2–3.4 M NaCl, pH 9.0–9.5 and 45 °C. Addition of Mg2+ was not required for growth. The major polar lipids of the isolate were C20C20 and C20C25 archaeol derivatives of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. Glycolipids were not detected. The DNA G+C content was 64.1 mol%. The 16S rRNA gene sequence of strain MK13-1T was most closely related to those of the species of the genus Halorubrum, Halorubrum luteum CECT 7303T (95.9 % similarity), Halorubrum alkaliphilum JCM 12358T (95.3 %), Halorubrum kocurii JCM 14978T (95.3 %) and Halorubrum lipolyticum JCM 13559T (95.3 %). The rpoB′ gene sequence of strain MK13-1T had < 90 % sequence similarity to those of other members of the genus Halorubrum. Based on the phylogenetic analysis and phenotypic characterization, strain MK13-1T may represent a novel species of the genus Halorubrum, for which the name Halorubrum gandharaense sp. nov. is proposed, with the type strain MK13-1T ( = JCM 17823T = CECT 7963T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2089-2093 ◽  
Author(s):  
Yong-Jin Lee ◽  
Christopher S. Romanek ◽  
Gary L. Mills ◽  
Richard C. Davis ◽  
William B. Whitman ◽  
...  

An obligatorily anaerobic, thermotolerant, asporogenic bacterium, strain JW/YJL-S1T, was isolated from a sediment sample of a constructed wetland system receiving acid sulfate water (pH 1.6–3.0). Cells of strain JW/YJL-S1T were straight to curved rods 0.2–0.4 μm in diameter and 2.0–7.0 μm in length, and stained Gram-negative. Growth of strain JW/YJL-S1T was observed at 25–54 °C (no growth at or below 20 or at or above 58 °C), with an optimum temperature range for growth of 42.5–46.5 °C. The pH25 °C range for growth was 6.0–8.25 (no growth at or below pH 5.7 or at or above pH 8.5), with optimum growth at pH 6.8–7.75. The salinity range for growth was 0–1.5 % (w/v) NaCl, with an optimum at 0–0.5 %. During growth on glucose the isolate produced acetate, lactate and ethanol as main fermentation end products. The fatty acid composition was dominated by branched-chain compounds: i15 : 0, a15 : 0, i16 : 0 and i17 : 0. The G+C content of the genomic DNA was 42.8 mol% (HPLC). Strain JW/YJL-S1T showed polymorphism of the 16S rRNA gene. Its closest relative was the thermophilic Clostridium thermosuccinogenes DSM 5807T (a member of Clostridium cluster III) (a blastn search revealed Clostridium pascui DSM 10365T to have 92.7 % gene sequence similarity, the highest value). The inferred phylogenetic trees placed strain JW/YJL-S1T between Clostridium clusters I/II and III. Based on the morphological and phylogenetic data presented, JW/YJL-S1T (=DSM 17427T=ATCC BAA-1219T) is proposed as the type strain of a novel species in a new genus, Gracilibacter thermotolerans gen. nov., sp. nov.


2007 ◽  
Vol 57 (7) ◽  
pp. 1418-1423 ◽  
Author(s):  
Jason J. Plumb ◽  
Christina M. Haddad ◽  
John A. E. Gibson ◽  
Peter D. Franzmann

A novel, extremely thermoacidophilic, obligately chemolithotrophic archaeon (strain JP7T) was isolated from a solfatara on Lihir Island, Papua New Guinea. Cells of this organism were non-motile, Gram-negative staining, irregular-shaped cocci, 0.5–1.5 μm in size, that grew aerobically by oxidation of sulfur, Fe2+ or mineral sulfides. Cells grew anaerobically using Fe3+ as a terminal electron acceptor and H2S as an electron donor but did not oxidize hydrogen with elemental sulfur as electron acceptor. Strain JP7T grew optimally at 74 °C (temperature range 45–83 °C) and pH 0.8–1.4 (pH range 0.35–3.0). On the basis of 16S rRNA gene sequence similarity, strain JP7T was shown to belong to the Sulfolobaceae, being most closely related to the type strains of Acidianus ambivalens (93.7 %) and Acidianus infernus (93.6 %). Cell-membrane lipid structure, DNA base composition and 16S rRNA gene sequence similarity data support the placement of this strain in the genus Acidianus. Differences in aerobic and anaerobic metabolism, temperature and pH range for growth, and 16S rRNA gene sequence differentiate strain JP7T from recognized species of the genus Acidianus, and an emendation of the description of the genus is proposed. Strain JP7T is considered to represent a novel species of the genus Acidianus, for which the name Acidianus sulfidivorans sp. nov. is proposed. The type strain is JP7T (=DSM 18786T=JCM 13667T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1473-1477 ◽  
Author(s):  
Keiko Watanabe ◽  
Norio Nagao ◽  
Shuich Yamamoto ◽  
Tatsuki Toda ◽  
Norio Kurosawa

A Gram-negative, rod-shaped, spore-forming and moderately thermophilic bacterium, strain KWC4T, was isolated from a composting reactor. Cells of strain KWC4T were 2.0–5.0 μm long and 0.5–0.7 μm in diameter. Strain KWC4T grew aerobically at 32–61 °C, with optimal growth occurring at 50 °C. It grew at pH 5.6–10.1, with optimal growth at around pH 9.0. The optimum NaCl concentration for growth was almost 0 % (w/v), but strain KWC4T was moderately halotolerant and was able to grow at NaCl concentrations up to 4.4 % (w/v). The DNA G+C content of strain KWC4T was 60.0 mol%. The major fatty acids were iso-16 : 0 (39.0 %) and anteiso-15 : 0 (33.3 %). Based on 16S rRNA gene sequence similarity data, strain KWC4T belonged to the genus Thermobacillus and was related to Thermobacillus xylanilyticus. However, strain KWC4T had a 38 bp insertion sequence located near the 3′ end of its 16S rRNA gene that was not present in T. xylanilyticus. The 16S rRNA gene sequence similarity value between strain KWC4T and T. xylanilyticus was 95.7 %. The DNA–DNA hybridization value between strain KWC4T and T. xylanilyticus strain XET was 66 %. On the basis of phenotypic and genotypic evidence, strain KWC4T (=DSM 18247T=JCM 13945T) is the type strain of a novel species, for which the name Thermobacillus composti sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1860-1865 ◽  
Author(s):  
Fan Yang ◽  
Hong-ming Liu ◽  
Rong Zhang ◽  
Ding-bin Chen ◽  
Xiang Wang ◽  
...  

YF-3T is a Gram-stain-negative, non-motile, non-spore-forming, yellow–orange, rod-shaped bacterium. Optimal growth conditions were at 30 °C, pH 7.0 and 1 % (w/v) NaCl. Phylogenetic analysis, on the basis of the 16S rRNA gene sequence, showed that strain YF-3T was closely related to the strains Chryseobacterium hispalense AG13T and Chryseobacterium taiwanense Soil-3-27T with 98.71 % and 96.93 % sequence similarity, respectively. Strain YF-3T contained MK-6 as the main menaquinone and had a polyamine pattern with sym-homospermidine as the major component. Its major polar lipid was phosphatidylethanolamine. The dominant fatty acids of strain YF-3T were iso-C15 : 0, iso-C17 : 0 3-OH, summed feature 9 (comprising iso-C17 : 1ω9c and/or C16 : 0 10-methyl) and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). The DNA G+C content of strain YF-3T was 37 mol%. The DNA–DNA relatedness levels between strain YF-3T and the most closely related strains, C. hispalense AG13T and C. taiwanense Soil-3-27T, were 31.7 ± 2.1 % and 28.4 ± 5.4 %, respectively. Based on these results, a novel species named Chryseobacterium shandongense sp. nov. is proposed. The type strain is YF-3T ( = CCTCC AB 2014060T = JCM 30154T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4526-4532 ◽  
Author(s):  
Shaoxing Chen ◽  
Hong-Can Liu ◽  
Dahe Zhao ◽  
Jian Yang ◽  
Jian Zhou ◽  
...  

Two halophilic archaeal strains, Q85T and Q86, were isolated from a subterranean salt mine in Yunnan, China. Cells were rod-shaped, Gram-stain-negative and motile. Colonies were red, smooth, convex and round (1.0–2.0 mm in diameter). The orthologous 16S rRNA and rpoB′ gene sequences of these two strains were almost identical (99.5 and 99.7 % similarities). Their closest relatives were Halorubrum kocurii BG-1T (98.0–98.1 % 16S rRNA gene sequence similarity), Halorubrum aidingense 31-hongT (97.6–97.7 %) and Halorubrum lipolyticum 9-3T (97.5–97.6 %). The level of DNA–DNA relatedness between strains Q85T and Q86 was 90 %, while that between Q85T and other related Halorubrum strains was less than 30 % (29 % for H. kocurii BG-1T, 25 % for H. aidingense 31-hongT and 22 % for H. lipolyticum 9-3T). Optimal growth of the two novel strains was observed with 20 % (w/v) NaCl and at 42–45 °C under aerobic conditions, with a slight difference in optimum Mg2+ concentration (0.7 M for Q85T, 0.5 M for Q86) and a notable difference in optimum pH (pH 7.5 for Q85T, pH 6.6 for Q86). Anaerobic growth occurred with nitrate, but not with l-arginine or DMSO. The major polar lipids of the two strains were identical, including phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and sulfated diglycosyl diether, which are the major lipids of the genus Halorubrum. The G+C contents of strains Q85T and Q86 were 66.3 and 66.8 %, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic properties of strains Q85T and Q86, a novel species, Halorubrum yunnanense sp. nov., is proposed. The type strain is Q85T ( = CGMCC 1.15057T = JCM 30665T).


Sign in / Sign up

Export Citation Format

Share Document