scholarly journals Maritimibacter alkaliphilus gen. nov., sp. nov., a genome-sequenced marine bacterium of the Roseobacter clade in the order Rhodobacterales

2007 ◽  
Vol 57 (7) ◽  
pp. 1653-1658 ◽  
Author(s):  
Kiyoung Lee ◽  
Yoe-Jin Choo ◽  
Stephen J. Giovannoni ◽  
Jang-Cheon Cho

A Gram-negative, chemoheterotrophic, strictly aerobic, alkaliphilic, rod-shaped marine bacterium, designated HTCC2654T, was isolated from the western Sargasso Sea by using a dilution-to-extinction culturing method. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HTCC2654T belonged to the Roseobacter clade of the order Rhodobacterales. The 16S rRNA gene sequence similarity of the strain with respect to other members of the Roseobacter clade ranged from 90.4 to 95.1 %. In the phylogenetic analyses, the strain formed an independent phyletic line and could not be assigned to any other known genera of the Rhodobacterales. The DNA G+C content of strain HTCC2654T was 61.7 mol% by HPLC and 64.1 mol% from genome sequences. The predominant constituents of the cellular fatty acids were C16 : 0 2-OH (27.3 %), 11-methyl C18 : 1 ω7c (19.6 %) and C18 : 1 ω7c (17.3 %), and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine, which served to differentiate the strain from other members of the Roseobacter clade. On the basis of the taxonomic data obtained in this study, strain HTCC2654T represents a novel genus and species, for which the name Maritimibacter alkaliphilus gen. nov., sp. nov. is proposed. The type strain is HTCC2654T (=KCCM 42376T=NBRC 102057T).

2007 ◽  
Vol 57 (2) ◽  
pp. 270-275 ◽  
Author(s):  
Dong H. Choi ◽  
Jang-Cheon Cho ◽  
Brian D. Lanoil ◽  
Stephen J. Giovannoni ◽  
Byung C. Cho

Two strictly aerobic, Gram-negative bacteria, designated strains CL-SP27T and B5-6T, were isolated from the hypersaline water of a solar saltern in Korea and from the surface water of the Sargasso Sea, respectively. The two strains were rod-shaped, non-motile and grew on marine agar 2216 as beige colonies. Phylogenetic analyses of 16S rRNA gene sequences revealed a clear affiliation of the novel strains to the family Rhodobacteraceae. However, the novel strains were only distantly related to members of the Roseobacter clade, forming a distinct lineage. Although the 16S rRNA gene sequence similarity between strains CL-SP27T and B5-6T was very high (99.6 %), DNA–DNA relatedness between the strains was 48.4 %, suggesting that the strains be categorized as two genospecies. Additionally, the two novel strains could be differentiated by DNA G+C contents, fatty acid profiles, carbon source utilization patterns, antibiotic susceptibilities and biochemical characteristics. Based on taxonomic data obtained in this study, strains CL-SP27T and B5-6T represent separate species within a novel genus of the family Rhodobacteraceae, for which the names Maribius salinus gen. nov., sp. nov. (type species) and Maribius pelagius sp. nov. are proposed. The type strains of Maribius salinus and Maribius pelagius are CL-SP27T (=KCCM 42113T=JCM 13037T) and B5-6T (=KCCM 42336T=JCM 14009T), respectively.


2007 ◽  
Vol 57 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Hana Yi ◽  
Peter Schumann ◽  
Jongsik Chun

An actinobacterial strain containing demethylmenaquinone DMK-9(H4) as the diagnostic isoprenoid quinone was isolated from a tidal flat sediment sample, from South Korea. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain JC2054T represents a distinct phyletic line within the suborder Micrococcineae of the order Actinomycetales. The closest phylogenetic neighbour was Cellulomonas fermentans, with 94.7 % 16S rRNA gene sequence similarity. The novel isolate was strictly aerobic and slightly halophilic, with optimum growth occurring in 2–4 % (w/v) NaCl. Cells were non-motile, non-sporulating and rod-shaped. The peptidoglycan type was of the A-type of cross-linkage. l-ornithine was the diamino acid and d-glutamate represented the N-terminus of the interpeptide bridge. The predominant fatty acids were anteiso-branched and straight-chain fatty acids. The major polar lipids were phosphatidylinositol, diphosphatidylglycerol and an unknown phospholipid. The menaquinone composition of C. fermentans was determined to be MK-10(H4), MK-9(H4) and MK-8(H4) in the ratio 56 : 2 : 1. On the basis of the polyphasic evidence presented in this study, it is proposed that strain JC2054T should be classified as representing a novel genus and species of the suborder Micrococcineae, with the name Demequina aestuarii gen. nov., sp. nov. The type strain is JC2054T (=IMSNU 14027T=KCTC 9919T=JCM 12123T). In addition, it was clear from the phylogenetic analysis and chemotaxonomic data that C. fermentans does not belong to the genus Cellulomonas or any other recognized genera. Therefore, C. fermentans should be reclassified as representing a novel genus, for which the name Actinotalea fermentans gen. nov., comb. nov. is proposed, with strain DSM 3133T (=ATCC 43279T=CFBP 4259T=CIP 103003T=NBRC 15517T=JCM 9966T=LMG 16154T) as the type strain.


2011 ◽  
Vol 61 (11) ◽  
pp. 2729-2733 ◽  
Author(s):  
Youn-Je Park ◽  
Moon Su Park ◽  
Seung Hyeon Lee ◽  
Woojun Park ◽  
Kangseok Lee ◽  
...  

A Gram-staining-negative, strictly aerobic bacterium, designated strain G3T, was isolated from a tidal flat of the Taean coast in South Korea. Cells were moderately halotolerant and non-motile rods showing catalase- and oxidase-positive reactions. Growth of strain G3T was observed between 15 and 40 °C (optimum 30 °C) and between pH 5.5 and 9.0 (optimum pH 6.5–7.5). Strain G3T contained Q-8 as the predominant lipoquinone and iso-C15 : 0, iso-C17 : 1ω9c, iso-C16 : 0 and iso-C11 : 0 as the major fatty acids. The G+C content of the genomic DNA was 69.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain G3T formed a tight phylogenetic lineage with Luteimonas mephitis B1953/27.1T within the genus Luteimonas and was most closely related to L. mephitis B1953/27.1T with 98.0 % 16S rRNA gene sequence similarity. The DNA–DNA relatedness between strain G3T and L. mephitis B1953/27.1T was 35.2±3.3 %. On the basis of chemotaxonomic data and molecular properties, strain G3T represents a novel species of the genus Luteimonas, for which the name Luteimonas lutimaris sp. nov. is proposed. The type strain is G3T ( = KACC 14929T = JCM 16916T).


2012 ◽  
Vol 62 (1) ◽  
pp. 150-154 ◽  
Author(s):  
Seong Chan Park ◽  
Han Na Choe ◽  
Keun Sik Baik ◽  
Kang Hyun Lee ◽  
Chi Nam Seong

A rod-shaped, yellow and strictly aerobic marine bacterium, designated KYW382T, was isolated from seawater collected from the South Sea, Republic of Korea. Cells were Gram-negative and catalase- and oxidase-positive. The major fatty acids were iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and anteiso-C15 : 0. The DNA G+C content was 32.4 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain KYW382T constituted an evolutionary lineage within the radiation enclosing the members of the genus Gaetbulibacter. The closest neighbour was Gaetbulibacter saemankumensis SMK-12T (96.1 % 16S rRNA gene sequence similarity). A number of phenotypic characteristics distinguished strain KYW382T from the described members of the genus Gaetbulibacter. On the basis of the data presented in this study, strain KYW382T represents a novel species, for which the name Gaetbulibacter aestuarii sp. nov. is proposed. The type strain is KYW382T ( = KCTC 23303T  = JCM 17455T). An emended description of the genus Gaetbulibacter is also given.


2007 ◽  
Vol 57 (10) ◽  
pp. 2212-2215 ◽  
Author(s):  
Soon Dong Lee

A novel marine bacterium was isolated from a sediment sample from Hwasun Beach in Jeju, Republic of Korea. The cells were found to be Gram-negative, aerobic, oxidase-positive, catalase-positive, motile rods. The organism required natural seawater or artificial sea salts for growth. The temperature and pH ranges for growth were 20–42 °C and pH 5.1–12.1, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that the organism belonged to the order Rhizobiales and formed a robust cluster with members of the genus Devosia. Its phylogenetic neighbours were the type strains of Devosia riboflavina (96.8 % 16S rRNA gene sequence similarity), Devosia neptuniae (96.7 %), Devosia soli (96.5 %) and Devosia limi (96.2 %), ‘Devosia terrae’ DCY11 (96.2 %) and ‘Candidatus Devosia euplotis’ (96.2 %). The predominant ubiquinone was Q-10, the major fatty acids were C18 : 1, C18 : 0 and C16 : 0 and the G+C content of the DNA was 59.1 mol%. On the basis of phenotypic data and the results of phylogenetic analyses, strain HST3-14T represents a novel species of the genus Devosia, for which the name Devosia subaequoris sp. nov. is proposed. The type strain is strain HST3-14T (=KCTC 12772T =JCM 14206T).


2011 ◽  
Vol 61 (2) ◽  
pp. 417-421 ◽  
Author(s):  
Byoung-Jun Yoon ◽  
Han-Su You ◽  
Dong-Heon Lee ◽  
Duck-Chul Oh

A Gram-stain-negative, yellow-pigmented, rod-shaped, strictly aerobic, non-flagellated, non-gliding and oxidase- and catalase-positive bacterium, designated A6T, was isolated from a marine sponge, Halichondria oshoro, collected on the coast of Jeju Island, South Korea. Phylogenetic analysis based on the nearly complete 16S rRNA gene sequence revealed that strain A6T was a member of the family Flavobacteriaceae. The closest relatives were Aquimarina intermedia LMG 23204T, A. latercula ATCC 23177T, A. brevivitae SMK-19T and A. muelleri KMM 6020T, with which strain A6T shared 95.7, 95.1, 94.7 and 94.6 % 16S rRNA gene sequence similarity, respectively. The dominant fatty acids of strain A6T were iso-C15 : 0 (32.2 %), iso-C17 : 0 3-OH (20.0 %), iso-C15 : 0 3-OH (12.3 %), iso-C15 : 1 G (7.2 %) and summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1 ω7c; 6.8 %). The DNA G+C content of strain A6T was 36.0 mol% and the major respiratory quinone was MK-6. On the basis of combined phenotypic and phylogenetic analyses, strain A6T represents a novel species of the genus Aquimarina, for which the name Aquimarina spongiae sp. nov. is proposed. The type strain is A6T (=KCTC 22663T =DSM 22623T).


2006 ◽  
Vol 56 (10) ◽  
pp. 2369-2373 ◽  
Author(s):  
Soon Dong Lee

A marine actinomycete strain, designated KSW2-15T, was isolated from a dried seaweed sample collected from a sandy beach on the coast of Jeju in the Republic of Korea. The organism produced non-motile, non-endospore-forming, Gram-positive, coccoid cells. The colonies were circular, translucent and yellow in colour with entire margins. meso-Diaminopimelic acid was present as the diamino acid of the peptidoglycan. The acyl type of the muramic acid was acetyl. Mycolic acids were not present. The predominant menaquinone was MK-8(H4). The polar lipids were phosphatidylethanolamine, phosphatidylinositol and diphosphatidylglycerol. The major cellular fatty acids were of the saturated, unsaturated and iso-branched methyl types. The DNA G+C content was 74 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain KSW2-15T formed a loose association with ‘Candidatus Nostocoida limicola’, within the radiation of the family Intrasporangiaceae of the suborder Micrococcineae. The organism showed the highest levels of sequence similarity with ‘Candidatus Nostocoida limicola’ (96.1 %), Terrabacter tumescens (96.1 %) and Terrabacter terrae (96.0 %). The levels of 16S rRNA gene sequence similarity between the isolate and members of other genera of the family Intrasporangiaceae were in the range 92.1–95.5 %. On the basis of the polyphasic evidence, the isolate should be classified within a novel genus and species, for which the name Phycicoccus jejuensis gen. nov., sp. nov. is proposed. The type strain of Phycicoccus jejuensis is strain KSW2-15T (=KCCM 42315T=NRRL B-24460T).


2006 ◽  
Vol 56 (4) ◽  
pp. 855-859 ◽  
Author(s):  
Jang-Cheon Cho ◽  
Stephen J. Giovannoni

A Gram-negative, chemoheterotrophic, facultatively anaerobic, slightly halophilic, oval-shaped marine bacterium, designated HTCC2601T, was isolated from the western Sargasso Sea by high-throughput culturing involving dilution to extinction. Although the 16S rRNA gene sequence similarity between the isolate and Salipiger mucosus was 96·5 %, phylogenetic analyses using different treeing algorithms clearly indicated that the strain forms a distinct lineage within a clade containing the recently classified genera Salipiger and Palleronia in the order Rhodobacterales of the Alphaproteobacteria. The DNA–DNA relatedness between strain HTCC2601T and S. mucosus was 26·3 %. Strain HTCC2601T utilized a wide range of carbohydrates, including hexose monomers, sugar alcohols, organic acids and amino acids, as sole carbon sources. The DNA G+C content of strain HTCC2601T was 65·4 mol%, and the predominant constituents of the cellular fatty acids were 18 : 1ω7c (79·7 %) and 11-methyl 18 : 1ω7c (7·5 %). The strain differed from members of the closely related genera Salipiger and Palleronia in its morphological, biochemical and ecological characteristics. On the basis of the taxonomic data obtained in this study, a novel genus and species, Pelagibaca bermudensis gen. nov., sp. nov., is proposed; HTCC2601T (=KCTC 12554T=JCM 13377T) is the type strain of Pelagibaca bermudensis.


2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1158-1164 ◽  
Author(s):  
Byoung-Jun Yoon ◽  
Duck-Chul Oh

A Gram-negative, strictly aerobic, non-flagellated, non-gliding, oxidase- and catalase-positive, yellow-pigmented rod, designated A11T, was isolated from a marine sponge, Halichondria oshoro, collected on the coastline of Jeju Island, Republic of Korea. Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that strain A11T was a member of the family Flavobacteriaceae . Its closest relatives were members of the genera Muricauda , Flagellimonas and Croceitalea (94.4–94.8 % 16S rRNA gene sequence similarity). The only polar lipid detected in strain A11T was phosphatidylethanolamine. The dominant fatty acids were iso-C15 : 0 (30.4 %), iso-C15 : 1 G (26.7 %), iso-C17 : 0 3-OH (12.4 %) and iso-C15 : 0 3-OH (7.3 %). The DNA G+C content of strain A11T was 41.7 mol% and its major respiratory quinone was MK-6. On the basis of combined data from phenotypic and phylogenetic analyses, strain A11T represents a novel genus and species within the family Flavobacteriaceae , for which the name Spongiibacterium flavum gen. nov., sp. nov. is proposed. The type strain of the type species is A11T ( = KCTC 22665T = DSM 22638T). Emended descriptions of the genera Croceitalea and Flagellimonas are also given.


2020 ◽  
Vol 70 (6) ◽  
pp. 3606-3613 ◽  
Author(s):  
Zixiao Xu ◽  
Yuxiao Zhang ◽  
Yasir Muhammad ◽  
Gejiao Wang

A soil bacterium, designated ZX9611T, was isolated from Taihang Mountain in Henan province, PR China. The strain was Gram-stain-negative and strictly aerobic. The cells were motile, rod-shaped and formed light pink-colored colonies. The 16S rRNA gene sequence of ZX9611T shared the highest similarities with those of Sphingomonas crocodyli CCP-7T (97.0%), Sphingomonas jatrophae S5-249T (96.6%) and Sphingomonas starnbergensis 382T (95.9%). Phylogenetic analyses based on 16S rRNA gene sequences demonstrated that ZX9611T clustered with S. crocodyli CCP-7T, S. jatrophae S5-249T and S. starnbergensis 382T. The average nucleotide identity (ANI) values between ZX9611T and two type strains ( S. crocodyli BCRC 81096T and S. jatrophae DSM 27345T) were 88.3 and 68.6% respectively. ZX9611T exhibited genome-sequence-based digital DNA–DNA hybridization (dDDH) values of 53.3 % and 15.3 %, compared with S. crocodyli BCRC 81096T and S . jatrophae DSM 27345T, respectively. ZX9611T had a genome size of 4.12 Mb and an average DNA G+C content of 64.8 %. ZX9611T had major fatty acids (>5 %) including summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c), C14 : 0 2-OH, C16 : 0 and summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c), and the major polyamine was sym-homospermidine. The only respiratory quinone was ubiquinone-10. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, strain ZX9611T represents a novel species of genus Sphingomonas, for which the name Sphingomonas montanisoli sp. nov. is proposed. The type strain is ZX9611T (=KCTC 72622T=CCTCC AB 2019350T).


Sign in / Sign up

Export Citation Format

Share Document