scholarly journals Cerasicoccus arenae gen. nov., sp. nov., a carotenoid-producing marine representative of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’, isolated from marine sand

2007 ◽  
Vol 57 (9) ◽  
pp. 2067-2072 ◽  
Author(s):  
Jaewoo Yoon ◽  
Yoshihide Matsuo ◽  
Satoru Matsuda ◽  
Kyoko Adachi ◽  
Hiroaki Kasai ◽  
...  

A polyphasic taxonomic study was performed on strain YM26-026T, which was isolated from acid-treated sediment in Kamaishi, Japan. The bacterial cells were pale-pink-pigmented, Gram-negative, obligately aerobic, non-spore-forming, spherical and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences showed that the novel isolate was a member of the phylum ‘Verrucomicrobia’ and shared approximately 84–87 % sequence similarity with strains of the class Opitutae that have been cultivated to date. Strain YM26-026T produced pale-pink pigments of carotenoid. β-Lactam antibiotic susceptibility tests and amino acid analysis of cell-wall hydrolysates indicated that the novel isolate did not contain muramic acid or diaminopimelic acid in the cell wall, suggesting that the strain lacks peptidoglycan. The G+C content of the DNA of strain YM26-026T was 54.0 mol%. Menaquinone-7 was the major quinone and C14 : 0 and C18 : 1 ω9c were the major fatty acids. On the basis of polyphasic taxonomic studies, it was concluded that strain YM26-026T represents a new genus of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’, for which the name Cerasicoccus arenae gen. nov., sp. nov. is proposed. The type strain is YM26-026T (=MBIC08280T=KCTC 12870T).

2007 ◽  
Vol 57 (12) ◽  
pp. 2874-2880 ◽  
Author(s):  
Jaewoo Yoon ◽  
Naoya Oku ◽  
Satoru Matsuda ◽  
Hiroaki Kasai ◽  
Akira Yokota

An obligately aerobic, spherical, non-motile, pale-yellow pigmented bacterium was isolated from a piece of leaf of seagrass, Enhalus acoroides (L.f.) Royle, grown in Okinawa, Japan and was subjected to a polyphasic taxonomic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the novel isolate N5FB36-5T shared approximately 96–98 % sequence similarity with the species of the genus Pelagicoccus of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’. The DNA–DNA relatedness values of strain N5FB36-5T with Pelagicoccus mobilis 02PA-Ca-133T and Pelagicoccus albus YM14-201T were below 70 %, which is accepted as the phylogenetic definition of a novel species. β-Lactam antibiotic susceptibility test and amino acid analysis of the cell wall hydrolysates indicated the absence of muramic acid and diaminopimelic acid in the cell walls, which suggested that this strain lacks an ordinary Gram-negative type of peptidoglycan in the cell wall. The DNA G+C content of strain N5FB36-5T was 51.6 mol%; MK-7 was the major menaquinone; and the presence of C16 : 0, C16 : 1 ω7c and anteiso-C15 : 0 as the major cellular fatty acids supported the identification of the novel isolate as a member of the genus Pelagicoccus. On the basis of polyphasic taxonomic data, it was concluded that this strain should be classified as a novel species of the genus Pelagicoccus, for which the name Pelagicoccus croceus sp. nov. is proposed. The type strain is N5FB36-5T (=MBIC08282T=KCTC 12903T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2650-2656 ◽  
Author(s):  
Guo-Xing Nie ◽  
Hong Ming ◽  
Shuai Li ◽  
En-Min Zhou ◽  
Juan Cheng ◽  
...  

A novel actinomycete strain, designated YIM 75904T, was isolated from a soil sample that had been collected from a dry and hot river valley in Dongchuan county, Yunnan province, south-western China. The taxonomic position of the novel strain was investigated by a polyphasic approach. In phylogenetic analyses based on 16S rRNA gene sequences, strain YIM 75904T formed a distinct clade within the genus Amycolatopsis and appeared to be closely related to Amycolatopsis sacchari K24T (99.3 % sequence similarity). Strain YIM 75904T had a type-IV cell wall, with no detectable mycolic acids, and had MK-9(H4) as its predominant menaquonine. Its cell wall contained meso-diaminopimelic acid, galactose, glucose and arabinose, and its major cellular fatty acids were iso-C16 : 0, iso-C15 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. The genomic DNA G+C content of the novel strain was 68.5 mol%. Based on the results of physiological and biochemical tests and DNA–DNA hybridizations, strain YIM 75904T represents a novel species of the genus Amycolatopsis for which the name Amycolatopsis dongchuanensis sp. nov. is proposed. The type strain is YIM 75904T ( = CCTCC AA 2011016T  = JCM 18054T).


2007 ◽  
Vol 57 (4) ◽  
pp. 687-691 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
...  

A Gram-positive, rod-shaped, non-spore-forming and strictly aerobic bacterium (Gsoil 161T) was isolated from soil of a ginseng field in Pocheon Province, South Korea. The novel isolate was characterized using a polyphasic approach in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 161T was shown to belong to the family Nocardioidaceae and was related to Aeromicrobium marinum (98.0 % similarity to the type strain), Aeromicrobium alkaliterrae (97.6 %), Aeromicrobium fastidiosum (97.0 %) and Aeromicrobium erythreum (96.7 %); the sequence similarity with other species within the family was less than 94.4 %. It was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and C16 : 0, 10-methyl C18 : 0 (tuberculostearic acid), C16 : 0 2-OH, 10-methyl C17 : 0 and 10-methyl-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 65.5 mol%. These chemotaxonomic properties and phenotypic characteristics support the affiliation of strain Gsoil 161T to the genus Aeromicrobium. Results of physiological and biochemical tests enabled strain Gsoil 161T to be differentiated genotypically and phenotypically from currently known Aeromicrobium species. Therefore, strain Gsoil 161T represents a novel species, for which the name Aeromicrobium panaciterrae sp. nov. is proposed. The type strain is strain Gsoil 161T (=KCTC 19131T=DSM 17939T=CCUG 52476T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 591-595 ◽  
Author(s):  
Sang-Hee Lee ◽  
Qing-Mei Liu ◽  
Sung-Taik Lee ◽  
Sun-Chang Kim ◽  
Wan-Taek Im

A Gram-reaction-positive, rod-shaped, non-motile, non-spore-forming bacterium (strain BX5-10T) was isolated from the soil of a ginseng field on Baekdu Mountain in Jilin district, China. The taxonomic position of this bacterium was determined in an investigation based on a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain BX5-10T was shown to belong to the family Nocardioidaceae and to be most closely related to Nocardioides plantarum NCIMB 12834T (96.5 % sequence similarity), Nocardioides dokdonensis KCTC 19309T (96.2 %) and Nocardioides fonticola NAA-13T (95.1 %). Strain BX5-10T was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in its cell-wall peptidoglycan, MK-8(H4) as the predominant menaquinone and C18 : 1ω9c, C16 : 0 and C17 : 1ω8c as its major fatty acids. The G+C content of the genomic DNA was 70.3 mol%. The novel strain could be differentiated genotypically and phenotypically from all recognized species of the genus Nocardioides. Based on the results of the phylogenetic analyses and the genotypic and phenotypic data, a novel species, Nocardioides ginsengagri sp. nov., is proposed. The type strain is BX5-10T ( = KCTC 19467T = DSM 21362T).


2007 ◽  
Vol 57 (4) ◽  
pp. 713-716 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Deok-Chun Yang ◽  
Sung-Taik Lee

A Gram-positive, aerobic, coccus-shaped, non-endospore-forming bacterium (Gsoil 633T) was isolated from soil from a ginseng field in Pocheon province in South Korea. The novel isolate was characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarities, strain Gsoil 633T was shown to belong to the family Propionibacteriaceae. The closest phylogenetic relative was Microlunatus phosphovorus DSM 19555T, with 96.1 % sequence similarity; the sequence similarity to other members of the family was less than 95.4 %. The isolate was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 69.8 mol%. The morphological and chemotaxonomic properties of the isolate were consistent with those of M. phosphovorus, but the results of physiological and biochemical tests allowed the phenotypic differentiation of strain Gsoil 633T from this species. Therefore, strain Gsoil 633T represents a novel species, for which the name Microlunatus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 633T (=KCTC 13940T=DSM 17942T).


2010 ◽  
Vol 60 (2) ◽  
pp. 387-392 ◽  
Author(s):  
Chun Hwi Cho ◽  
Jung-Sook Lee ◽  
Dong-Shan An ◽  
Tae Woong Whon ◽  
Song-Gun Kim

A Gram-positive, rod-shaped, non-spore-forming bacterium (Gsoil 346T) was isolated from the soil of a ginseng field in South Korea and was characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequences, strain Gsoil 346T was shown to belong to the genus Nocardioides in the family Nocardioidaceae, with the most closely related species being Nocardioides aquiterrae GW-9T (96.6 % 16S rRNA gene sequence similarity); however, the strain clustered in a distinct branch of the phylogenetic tree with Nocardioides kongjuensis A2-4T (96.2 %), Nocardioides aromaticivorans H-1T (96.1 %), Nocardioides nitrophenolicus NSP41T (96.1 %) and Nocardioides simplex ATCC 15799T (95.9 %). Strain Gsoil 346T was characterized chemotaxonomically and found to have ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, phosphatidylinositol and phosphatidylglycerol as the major polar lipids, MK-8(H4) as the predominant menaquinone and iso-C16 : 0, C18 : 1 ω9c and C17 : 1 ω8c as the major fatty acids. The G+C content of the genomic DNA of the novel strain was 73.0 mol%. These chemotaxonomic properties supported the placement of strain Gsoil 346T in the genus Nocardioides. The results of physiological and biochemical tests, along with the phylogenetic analysis, allowed strain Gsoil 346T to be differentiated genotypically and phenotypically from recognized species of the genus Nocardioides. Therefore, strain Gsoil 346T represents a novel species, for which the name Nocardioides panacisoli sp. nov. is proposed, with Gsoil 346T (=KCTC 19470T=DSM 21348T) as the type strain.


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2642-2648 ◽  
Author(s):  
Thomas Clavel ◽  
Cédric Charrier ◽  
Mareike Wenning ◽  
Dirk Haller

A single strain, NR06T, was isolated from the intestine of a TNFdeltaARE mouse. Based on phylogenetic analysis of partial 16S rRNA gene sequences, strain NR06T belongs in the family Coriobacteriaceae within the Actinobacteria . The most closely related species with validly published names are members of the genera Adlercreutzia , Asaccharobacter and Enterorhabdus (<96 % sequence similarity). Strain NR06T was characterized by a high prevalence of monomethylmenaquinone-6 (MMK-6; 76 %) and the presence of meso-diaminopimelic acid in the cell wall. One of the major cellular fatty acids of strain NR06T was C15 : 0 ISO. Glucose was detected as a whole cell sugar. Strain NR06T was resistant to the antibiotic colistin and was positive for arginine and leucine arylamidase activity. Based on these characteristics, strain NR06T differed from related described bacteria. Therefore, the name Parvibacter caecicola gen. nov., sp. nov. is proposed to accommodate the novel bacterium. The type strain of the type species is NR06T ( = DSM 22242T = CCUG 57646T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1515-1520 ◽  
Author(s):  
Jaewoo Yoon ◽  
Satoru Matsuda ◽  
Kyoko Adachi ◽  
Hiroaki Kasai ◽  
Akira Yokota

A Gram-negative-staining, obligately aerobic, non-motile, rod-shaped and chemoheterotrophic bacterium, designated strain MN1-1006T, was isolated from an ascidian (sea squirt) sample, and was studied using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the new isolate shared approximately 93–99% sequence similarity with recognized species of the genus Rubritalea within the phylum ‘Verrucomicrobia’. DNA–DNA hybridization values between strain MN1-1006T and Rubritalea squalenifaciens HOact23T and Rubritalea sabuli YM29-052T were 57% and 14.5%, respectively. Strain MN1-1006T produced carotenoid compounds that rendered the cell biomass a reddish pink colour. The strain also contained squalene. The cell-wall peptidoglycan of the novel strain contained muramic acid and meso-diaminopimelic acid. The DNA G+C content of strain MN1-1006T was 51.4 mol%. The major cellular fatty acids were iso-C14:0, iso-C16:0 and anteiso-C15:0. The major isoprenoid quinone was MK-9. On the basis of these data, it was concluded that strain MN1-1006T represents a novel species of the genus Rubritalea, for which the name Rubritalea halochordaticola sp. nov. is proposed. The type strain is MN1-1006T ( = KCTC 23186T = NBRC 107102T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1899-1905 ◽  
Author(s):  
Tristan Barbeyron ◽  
Yannick Lerat ◽  
Jean-François Sassi ◽  
Sophie Le Panse ◽  
William Helbert ◽  
...  

A rod shaped, Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, non-gliding bacterium, designated strain PLRT, was isolated from faeces of the mollusc Aplysia punctata (Mollusca, Gastropoda) that had been fed with green algae belonging to the genus Ulva. The novel strain was able to degrade ulvan, a polysaccharide extracted from green algae (Chlorophyta, Ulvophyceae). The taxonomic position of strain PLRT was investigated by using a polyphasic approach. Strain PLRT was dark orange, oxidase-positive, catalase-positive and grew optimally at 25 °C, at pH 7.5 and in the presence of 2.5 % (w/v) NaCl with an oxidative metabolism using oxygen as the electron acceptor. Nitrate could not be used as the electron acceptor. Strain PLRT had a Chargaff’s coefficient (DNA G+C content) of 35.3 mol%. Phylogenetic analysis based on the sequence of the 16S rRNA gene placed the novel strain in the family Flavobacteriaceae (phylum ‘Bacteroidetes’), within a clade comprising Stenothermobacter spongiae, Nonlabens tegetincola, Sandarakinotalea sediminis, Persicivirga xylanidelens and Persicivirga dokdonensis. The closest neighbours of strain PLRT were P. xylanidelens and P. dokdonensis, sharing 95.2 and 95.5 % 16S rRNA gene sequence similarity, respectively. Phylogenetic inference and differential phenotypic characteristics demonstrated that strain PLRT represents a novel species of the genus Persicivirga, for which the name Persicivirga ulvanivorans sp. nov. is proposed. The type strain is PLRT ( = CIP 110082T = DSM 22727T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2813-2818 ◽  
Author(s):  
Zhan-Feng Xia ◽  
Tong-Wei Guan ◽  
Ji-Sheng Ruan ◽  
Ying Huang ◽  
Li-Li Zhang

A novel filamentous actinomycete strain, designated TRM 46004T, was isolated from sediment of Aiding Lake in Tulufan Basin (42° 64′ N 89° 26′ E), north-west China. The isolate was characterized using a polyphasic approach. The isolate formed abundant aerial mycelium with few branches and vegetative mycelium, occasionally twisted and coiled; spherical sporangia containing one to several spherical spores developed at the ends of short sporangiophores on aerial mycelium. The G+C content of the DNA was 65.2 mol%. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid and xylose, galactose and ribose as the major whole-cell sugars. The diagnostic phospholipids were phosphatidylethanolamine, phosphatidylcholine and phosphatidylglycerol. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H10). The major fatty acids were iso-C16 : 0 and anteiso-C17 : 0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain TRM 46004T formed a distinct lineage within the family Pseudonocardiaceae and showed 91.7–96.1 % 16S rRNA gene sequence similarity with members of the family Pseudonocardiaceae . On the basis of the evidence from this polyphasic study, a novel genus and species, Longimycelium tulufanense gen. nov., sp. nov., are proposed. The type strain of Longimycelium tulufanense is TRM 46004T ( = CGMCC 4.5737T = NBRC 107726T).


Sign in / Sign up

Export Citation Format

Share Document