scholarly journals Dickeya poaceiphila sp. nov., a plant-pathogenic bacterium isolated from sugar cane (Saccharum officinarum)

2020 ◽  
Vol 70 (8) ◽  
pp. 4508-4514 ◽  
Author(s):  
Nicole Hugouvieux-Cotte-Pattat ◽  
Céline Brochier-Armanet ◽  
Jean-Pierre Flandrois ◽  
Sylvie Reverchon

The genus Dickeya is an important group of plant pathogens that currently comprises 10 recognized species. Although most Dickeya isolates originated from infected cultivated plants, they are also isolated from water. The genomic sequence of the Australian strain NCPPB 569T clearly established its separation from the previously characterized Dickeya species. The average nucleotide identity and digital DNA–DNA hybridization values obtained by comparing strain NCPPB 569T with strains of characterized Dickeya species were lower than 87 and 32 %, respectively, supporting the delineation of a new species. The name Dickeya poaceiphila sp. nov. is proposed for this taxon with the type strain NCPPB 569T (=CFBP 8731T). Two other strains isolated in Australia, CFBP 1537 and CFBP 2040, also belong to this species. Phenotypic and genomic comparisons enabled the identification of traits distinguishing D. poaceiphila isolates from strains of other Dickeya species.

Author(s):  
Nicole Hugouvieux-Cotte-Pattat ◽  
Cécile Jacot des-Combes ◽  
Jérôme Briolay ◽  
Leighton Pritchard

The Pectobacteriaceae family of important plant pathogens includes the genus Dickeya . There are currently 12 described species of Dickeya , although some are poorly characterized at the genomic level. Only two genomes of Dickeya paradisiaca , the type strain CFBP 4178T and strain Ech703, have previously been sequenced. Members of this species are mostly of tropical or subtropical origin. During an investigation of strains present in our laboratory collection we sequenced the atypical strain A3967, registered as CFBP 722, isolated from Solanum lycopersicum (tomato) in the South of France in 1965. The genome of strain A3967 shares digital DNA–DNA hybridization and average nucleotide identity (ANI) values of 68 and 96 %, respectively, with the D. paradisiaca type strain CFBP 4178T. However, ANI analysis showed that D. paradisiaca strains are significantly dissimilar to the other Dickeya species, such that less than one third of their genomes align to any other Dickeya genome. On phenotypic, phylogenetic and genomic grounds, we propose a reassignment of D. paradisiaca to the genus level, for which we propose the name Musicola gen. nov., with Musicola paradisiaca as the type species and CFBP 4178T (NCPPB 2511T) as the type strain. Phenotypic analysis showed differences between strain A3967T and CFBP 4178T, such as for the assimilation of melibiose, raffinose and myo-inositol. These results support the description of two novel species, namely Musicola paradisiaca comb. nov. and Musicola keenii sp. nov., with CFBP 4178T (NCPPB 2511T=LMG 2542T) and A3967T (CFBP 8732T=LMG 31880T) as the type strains, respectively.


2020 ◽  
Vol 70 (8) ◽  
pp. 4653-4660 ◽  
Author(s):  
Taihua Li ◽  
Ye Zhuo ◽  
Chun-Zhi Jin ◽  
Xuewen Wu ◽  
So-Ra Ko ◽  
...  

A novel non-phototrophic member of the genus Rhodoferax was obtained from freshwater. The purpose of this study was to analyse the genome of a nonphototrophic strain and propose a new species based on its phylogenetic, genomic, physiological and chemotaxonomic characteristics. The results of phylogenetic analysis based on 16S rRNA gene sequences supports that the strain, designated Gr-4T, has a close relationship to the genus Rhodoferax . The observed average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strain Gr-4T and its closest related strains were 72.3–74.6 % and 21.9–22.8 %, respectively. These values were much lower than the species separation thresholds for ANI or dDDH of 95–96 and 70 %, respectively, and in fact fall in the intergeneric range. Strain Gr-4T does not contain RuBisCO-related genes, but does contain GS/GOGAT pathway-related genes enabling nitrate ammonification. A polyphasic study and a genomic-level investigation were done to establish the taxonomic status of strain Gr-4T. Based on the phylogenetic, genomic and physiological differences, it is proposed that the isolate be classified to the genus Rhodoferax as Rhodoferax aquaticus sp. nov. with isolate Gr-4T (=KCTC 32394T=JCM 19166T) as the type strain.


2020 ◽  
Vol 70 (10) ◽  
pp. 5355-5362 ◽  
Author(s):  
Heeyoung Kang ◽  
Inseong Cha ◽  
Haneul Kim ◽  
Kiseong Joh

Two novel strains (HMF3257T and HMF4905T), isolated from freshwater and bark samples, were investigated to determine their relationships within and between species of the genus Spirosoma by using a polyphasic approach. They were aerobic, Gram-stain-negative, non-motile and rod-shaped bacteria. The major fatty acids (>10%) in both strains were identified as summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 1 ω5c, while strains HMF3257T and HMF4905T contained a moderately high amount of C16 : 0 and iso-C15 : 0, respectively. The predominant respiratory quinone was MK-7 for both strains. In addition to phosphatidylethanolamine and one unidentified glycolipid, the polar lipid profile of strain HMF3257T consisted of three unidentified aminophospholipids, one unidentified aminolipid and two unidentified polar lipids, and that of strain HMF4905T consisted of one unidentified aminophospholipid, two unidentified aminolipids and three unidentified polar lipids. The DNA G+C contents of strains HMF3257T and HMF4905T were 47.2 and 46.4 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains HMF3257T and HMF4905T are closely related to Spirosoma migulaei 15J9-8T (97.0 % sequence similarity), while sharing 97.4 % sequence similarity with each other. The average nucleotide identity value between strains HMF3257T and HMF4905T was 81.1 %, and the digital DNA–DNA hybridization value between these two strains was 24.4 %. Based on the above data, strains HMF3257T and HMF4905T represent two novel members within the genus Spirosoma , for which the names Spirosoma telluris sp. nov. and Spirosoma arboris sp. nov. are proposed, respectively. The type strain of S. telluris is HMF3257T (=KCTC 62463T=NBRC 112670T) and type strain of S. arboris is HMF4905T (=KCTC 72779T=NBRC 114270T).


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 23-29 ◽  
Author(s):  
Dominique Gueule ◽  
Gérard Fourny ◽  
Elisabeth Ageron ◽  
Anne Le Flèche-Matéos ◽  
Mathias Vandenbogaert ◽  
...  

Six isolates recovered from coffee seeds giving off a potato-like flavour were studied. Gene sequencing (rrs and rpoB) showed they belong to the genus Pantoea . By DNA–DNA hybridization, the isolates constituted a genomic species with less than 17 % relatedness to 96 strains representing enterobacterial species. Multilocus sequence analysis (gyrB, rpoB, atpD and infB genes) showed the isolates to represent a discrete species of the genus Pantoea . Nutritional versatility of the novel species was poor. The novel species is proposed as Pantoea coffeiphila sp.nov. and its type strain is Ca04T ( = CIP 110718T = DSM 28482T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 2060-2065 ◽  
Author(s):  
Wei-Chun Hung ◽  
Hsiao-Jan Chen ◽  
Jui-Chang Tsai ◽  
Sung-Pin Tseng ◽  
Tai-Fen Lee ◽  
...  

Four Gram-staining-positive, catalase-negative, coccoid isolates, designated NTUH_1465T, NTUH_2196, NTUH_4957 and NTUH_5572T, were isolated from human specimens. The four isolates displayed more than 99.6 % 16S rRNA gene sequence similarity with Gemella haemolysans ATCC 10379T, and 96.7 to 98.6 % similarity with Gemella sanguinis ATCC 700632T, Gemella morbillorum ATCC 27824T or Gemella cuniculi CCUG 42726T. However, phylogenetic analysis of concatenated sequences of three housekeeping genes, groEL, rpoB and recA, suggested that the four isolates were distinct from G. haemolysans ATCC 10379T and other species. Isolates NTUH_2196, NTUH_4957 and NTUH_5572T clustered together and formed a stable monophyletic clade. DNA–DNA hybridization values among strains NTUH_1465T and NTUH_5572T and their phylogenetically related neighbours were all lower than 49 %. The four isolates could be distinguished from G. haemolysans and other species by phenotypic characteristics. Based on the phylogenetic and phenotypic results, two novel species Gemella parahaemolysans sp. nov. (type strain NTUH_1465T = BCRC 80365T = JCM 18067T) and Gemella taiwanensis sp. nov. (type strain NTUH_5572T = BCRC 80366T = JCM 18066T) are proposed.


Author(s):  
Nay C. Dia ◽  
Johan Van Vaerenbergh ◽  
Cinzia Van Malderghem ◽  
Jochen Blom ◽  
Theo H. M. Smits ◽  
...  

This paper describes a novel species isolated in 2011 and 2012 from nursery-grown Hydrangea arborescens cultivars in Flanders, Belgium. After 4 days at 28 °C, the strains yielded yellow, round, convex and mucoid colonies. Pathogenicity of the strains was confirmed on its isolation host, as well as on Hydrangea quercifolia. Analysis using MALDI-TOF MS identified the Hydrangea strains as belonging to the genus Xanthomonas but excluded them from the species Xanthomonas hortorum . A phylogenetic tree based on gyrB confirmed the close relation to X. hortorum . Three fatty acids were dominant in the Hydrangea isolates: anteiso-C15 : 0, iso-C15 : 0 and summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c). Unlike X. hortorum pathovars, the Hydrangea strains were unable to grow in the presence of lithium chloride and could only weakly utilize d-fructose-6-PO4 and glucuronamide. Phylogenetic characterization based on multilocus sequence analysis and phylogenomic characterization revealed that the strains are close to, yet distinct from, X. hortorum . The genome sequences of the strains had average nucleotide identity values ranging from 94.35–95.19 % and in silico DNA–DNA hybridization values ranging from 55.70 to 59.40 % to genomes of the X. hortorum pathovars. A genomics-based loop-mediated isothermal amplification assay was developed which was specific to the Hydrangea strains for its early detection. A novel species, Xanthomonas hydrangeae sp. nov., is proposed with strain LMG 31884T (=CCOS 1956T) as the type strain.


Author(s):  
Laura A. Wolter ◽  
Shota Suenami ◽  
Ryo Miyazaki

The gut of honey bees is characterized by a stable and relatively simple community of bacteria, consisting of seven to ten phylotypes. Two closely related honey bees, Apis mellifera (western honey bee) and Apis cerana (eastern honey bee), show a largely comparable occurrence of those phylotypes, but a distinct set of bacterial species and strains within each bee species. Here, we describe the isolation and characterization of Ac13T, a new species within the rare proteobacterial genus Frischella from A. cerana japonica Fabricius. Description of Ac13T as a new species is supported by low identity of the 16S rRNA gene sequence (97.2 %), of the average nucleotide identity based on orthologous genes (77.5 %) and digital DNA–DNA hybridization relatedness (24.7 %) to the next but far related type strain Frischella perrara PEB0191T, isolated from A. mellifera. Cells of Ac13T are mesophilic and have a mean length of 2–4 µm and a width of 0.5 µm. Optimal growth was achieved in anoxic conditions, whereas growth was not observed in oxic conditions and strongly reduced in microaerophilic environment. Strain Ac13T shares several features with other members of the Orbaceae , such as the major fatty acid profile, the respiratory quinone type and relatively low DNA G+C content, in accordance with its evolutionary relationship. Unlike F. perrara , strain Ac13T is susceptible to a broad range of antibiotics, which could be indicative for an antibiotic-free A. cerana bee keeping. In conclusion, we propose strain Ac13T as a novel species for which we propose the name Frischella japonica sp. nov. with the type strain Ac13T (=NCIMB 15259=JCM 34075).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 729-734 ◽  
Author(s):  
T. N. R. Srinivas ◽  
S. Prasad ◽  
P. Manasa ◽  
B. Sailaja ◽  
Z. Begum ◽  
...  

A novel Gram-negative, rod-shaped, non-motile, psychrophilic bacterium, designated strain E4-9aT, was isolated from a marine sediment sample collected at a depth of 276 m from Kongsfjorden, Svalbard, in the Arctic Ocean. The colony colour was golden yellow. Strain E4-9aT was positive for amylase activity at 5 °C. The predominant fatty acids were iso-C15 : 1 G (21.8 %), anteiso-C15 : 0 (19.1 %), anteiso-C15 : 1 A (18.6 %), iso-C15 : 0 (13.8 %) and iso-C16 : 1 H (6.4 %). Strain E4-9aT contained MK-6 as the major respiratory quinone. The polar lipids consisted of phosphatidylethanolamine, three unidentified aminolipids (AL1, AL4 and AL5), an unidentified phospholipid and four unidentified lipids (L1, L4 to L6). Based on 16S rRNA gene sequence similarity, it was ascertained that the closest related species to E4-9aT were Lacinutrix copepodicola , L. algicola and L. mariniflava , with sequence similarity to the respective type strains of 98.5, 96.5 and 95.8 %. Phylogenetic analysis showed that strain E4-9aT clustered with the type strain of L. copepodicola and with those of L. algicola and L. mariniflava at distances of 1.5 and 4.8 % (98.5 and 95.2 % similarity), respectively. However, DNA–DNA hybridization with L. copepodicola DJ3T showed 59 % relatedness with respect to strain E4-9aT. The DNA G+C content of strain E4-9aT was 29 mol%. Based on the results of DNA–DNA hybridization and phenotypic data, it appears that strain E4-9aT represents a novel species of the genus Lacinutrix , for which the name Lacinutrix himadriensis sp. nov. is proposed. The type strain is E4-9aT ( = CIP 110310T  = KCTC 23612T).


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4691-4697 ◽  
Author(s):  
Yi-sheng Chen ◽  
Yu-hsuan Lin ◽  
Shwu-fen Pan ◽  
Si-hua Ji ◽  
Yu-chung Chang ◽  
...  

A coccal strain isolated from fresh broccoli was initially identified as Enterococcus saccharolyticus ; however, molecular identification and phenotypic traits did not support this identification. DNA–DNA hybridization with the type strain of E. saccharolyticus (76.4 % relatedness), DNA G+C content (35.7 mol%), phylogenetic analysis based on 16S rRNA, pheS and rpoA gene sequences, rep-PCR fingerprinting and profiles of cellular fatty acids, whole-cell proteins and enzyme activities, together with carbohydrate metabolism characteristics, indicated that this strain is distinct and represents a novel subspecies, for which the name Enterococcus saccharolyticus subsp. taiwanensis subsp. nov. is proposed. The type strain is 812T ( = NBRC 109476T = BCRC 80575T). Furthermore, we present an emended description of Enterococcus saccharolyticus and proposal of Enterococcus saccharolyticus subsp. saccharolyticus subsp. nov. (type strain ATCC 43076T = CCUG 27643T = CCUG 33311T = CIP 103246T = DSM 20726T = JCM 8734T = LMG 11427T = NBRC 100493T = NCIMB 702594T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 484-489 ◽  
Author(s):  
Hangsak Huy ◽  
Long Jin ◽  
Young-Ki Lee ◽  
Keun Chul Lee ◽  
Jung-Sook Lee ◽  
...  

A Gram-negative, non-motile, non-spore-forming and rod-shaped bacterial strain, CH15-1T, was isolated from a sediment sample taken from Daechung Reservoir, South Korea, during the late-blooming period of cyanobacteria. Strain CH15-1T grew optimally at pH 7.0 and 30 °C. A phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain CH15-1T belongs to the genus Arenimonas with the similarity range from 92.6–97.4 % and is closely related to Arenimonas oryziterrae YC6267T (97.4 %), Arenimonas composti TR7-09T (95.4 %), Arenimonas metalli CF5-1T (94.7 %), Arenimonas malthae CC-JY-1T (94.6 %) and Arenimonas donghaensis HO3-R19T (92.6 %). However, the DNA–DNA hybridization between strain CH15-1T and the closest strain, Arenimonas oryziterrae YC6267T, was 8.9–12.9 %. The DNA G+C content was 63.9 mol% compared to A. oryziterrae YC626T, 65.8 mol%. Strain CH15-1T included Q-8 as the major ubiquinone and phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine as the major polar lipids. The major fatty acids (>5 %) were iso-C15 : 0, iso-C16 : 0, iso-C14 : 0, iso-C11 : 0 3-OH, iso-C17 : 0 and summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl). On the basis of phylogenetic, phenotypic and genetic data, strain CH15-1T was classified in the genus Arenimonas as a member of a novel species, for which the name Arenimonas daechungensis sp. nov. is proposed. The type strain is CH15-1T ( = KCTC 23553T = DSM 24763T).


Sign in / Sign up

Export Citation Format

Share Document