scholarly journals Listeria valentina sp. nov., isolated from a water trough and the faeces of healthy sheep

2020 ◽  
Vol 70 (11) ◽  
pp. 5868-5879 ◽  
Author(s):  
Juan J. Quereda ◽  
Alexandre Leclercq ◽  
Alexandra Moura ◽  
Guillaume Vales ◽  
Ángel Gómez-Martín ◽  
...  

In the context of a study on the occurrence of Listeria species in an animal farm environment in Valencia, Spain, six Listeria -like isolates could not be assigned to any known species. Phylogenetic analysis based on the 16S rRNA gene and on 231 Listeria core genes grouped these isolates in a monophyletic clade within the genus Listeria , with highest similarity to Listeria thailandensis . Whole-genome sequence analyses based on in silico DNA–DNA hybridization, the average nucleotide blast and the pairwise amino acid identities against all currently known Listeria species confirmed that these isolates constituted a new taxon within the genus Listeria . Phenotypically, these isolates differed from other Listeria species mainly by the production of acid from inositol, the absence of acidification in presence of methyl α-d-glucoside, and the absence of α-mannosidase and nitrate reductase activities. The name Listeria valentina sp. nov. is proposed for this novel species, and the type strain is CLIP 2019/00642T (=CIP 111799T=DSM 110544T).

2019 ◽  
Vol 69 (4) ◽  
pp. 1060-1069 ◽  
Author(s):  
Pedro Raposo ◽  
Tomeu Viver ◽  
Luciana Albuquerque ◽  
Hugo Froufe ◽  
Cristina Barroso ◽  
...  

Chemotaxonomic parameters, phylogenetic analysis of the 16S rRNA gene, phylogenetic analysis of 90 housekeeping genes and 855 core genes, amino acid identity (AAI), average nucleotide identity (ANI) and genomic characteristics were used to examine the 13 species of the genus Meiothermus with validly published names to reclassify this genus. The results indicate that the species of the genus Meiothermus can be divided into three lineages on the basis of the results of the phylogenetic analysis, AAI, the guanine+cytosine (G+C) mole ratio, the ability to synthesize the red-pigmented carotenoid canthaxanthin and the colony colour, as well as other genomic characteristics. The results presented in this study circumscribe the genus Meiothermus to the species Meithermus ruber, Meiothermus cateniformans, Meiothermus taiwanensis, Meiothermus cerbereus, Meiothermus hypogaeus, Meiothermus luteus, Meiothermus rufus and Meiothermus granaticius, for which it is necessary to emend the genus Meiothermus . The species Meiothermus silvanus, which clearly represents a separate genus level lineage was not reclassified in this study for lack of any distinctive phenotypic or genotypic characteristics. The results of this study led us to reclassify the species Meiothermus chliarophilus, Meiothermus timidus, Meiothermus roseus and Meiothermus terrae as species of a novel genus for which we propose the epithet Calidithermus gen. nov.


2020 ◽  
Vol 70 (7) ◽  
pp. 4204-4211 ◽  
Author(s):  
Rosanna C. Hennessy ◽  
Søs I. Dichmann ◽  
Helle Juel Martens ◽  
Athanasios Zervas ◽  
Peter Stougaard

A novel bacterial strain, S40T, with strong antifungal activity was isolated from the rhizosphere of green potato collected from Zealand, Denmark. Polyphasic analysis with a combined phenotypic, phylogenetic and genomic approach was used to characterize S40T. Phylogenetic analysis based on the 16S rRNA gene and MLSA (concatenated gyrB, rpoD, infB and atpD sequences) showed that strain S40T was affiliated with the genus Serratia and with Serratia plymuthica PRI-2C as the closest related strain [average nucleotide identity (ANI), 99.26 %; DNA–DNA hybridization (dDDH), 99.20%]. However, whole genome sequence analyses revealed that S40T and S. plymuthica PRI-2C genomes displayed lower similarities when compared to all other S. plymuthica strains (ANI ≤94.34 %; dDDH ≤57.6 % relatedness). The DNA G+C content of strain S40T was determined to be 55.9 mol%. Cells of the strain were Gram-negative, rod-shaped, facultative anaerobic and displayed growth at 10–37 °C (optimum, 25–30 °C) and at pH 6–9 (optimum, pH 6–7). Major fatty acids were C16 : 0 (27.9 %), summed feature (C16 : 1  ω6c/C16 : 1 ω7c; 18.0 %) and C17 : 0 cyclo (15.1 %). The respiratory quinone was determined to be Q8 (94 %) and MK8 (95 %) and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The results of phenotypic, phylogenetic and genomic analyses support the hypothesis that strain S40T represents a novel species of the genus Serratia , for which the name Serratia inhibens sp. nov. is proposed. The type strain is S40T (=LMG 31467T=NCIMB 15235T). In addition, we propose that S. plymuthica PRI-2C is reclassified and transferred to the species S. inhibens as S. inhibens PRI-2C.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 316-324 ◽  
Author(s):  
Jongsik Chun ◽  
Fred A. Rainey

The polyphasic approach used today in the taxonomy and systematics of the Bacteria and Archaea includes the use of phenotypic, chemotaxonomic and genotypic data. The use of 16S rRNA gene sequence data has revolutionized our understanding of the microbial world and led to a rapid increase in the number of descriptions of novel taxa, especially at the species level. It has allowed in many cases for the demarcation of taxa into distinct species, but its limitations in a number of groups have resulted in the continued use of DNA–DNA hybridization. As technology has improved, next-generation sequencing (NGS) has provided a rapid and cost-effective approach to obtaining whole-genome sequences of microbial strains. Although some 12 000 bacterial or archaeal genome sequences are available for comparison, only 1725 of these are of actual type strains, limiting the use of genomic data in comparative taxonomic studies when there are nearly 11 000 type strains. Efforts to obtain complete genome sequences of all type strains are critical to the future of microbial systematics. The incorporation of genomics into the taxonomy and systematics of the Bacteria and Archaea coupled with computational advances will boost the credibility of taxonomy in the genomic era. This special issue of International Journal of Systematic and Evolutionary Microbiology contains both original research and review articles covering the use of genomic sequence data in microbial taxonomy and systematics. It includes contributions on specific taxa as well as outlines of approaches for incorporating genomics into new strain isolation to new taxon description workflows.


Author(s):  
Yuxin Chen ◽  
Arisa Nishihara ◽  
Takao Iino ◽  
Moriya Ohkuma ◽  
Shin Haruta

A novel nitrogen-fixing fermentative bacterium, designated as YA01T, was isolated from Nakabusa hot springs in Japan. The short-rod cells of strain YA01T were Gram-positive and non-sporulating. Phylogenetic trees of the 16S rRNA gene sequence and concatenated sequences of 40 single-copy ribosomal genes revealed that strain YA01T belonged to the genus Caldicellulosiruptor and was closely related to Caldicellulosiruptor hydrothermalis 108T, Caldicellulosiruptor bescii DSM 6725T and Caldicellulosiruptor kronotskyensis 2002T. The 16S rRNA gene sequence of strain YA01T shares less than 98.1 % identity to the known Caldicellulosiruptor species. The G+C content of the genomic DNA was 34.8 mol%. Strain YA01T shares low genome-wide average nucleotide identity (90.31–91.10 %), average amino acid identity (91.45–92.10 %) and <70 % digital DNA–DNA hybridization value (41.8–44.2 %) with the three related species of the genus Caldicellulosiruptor . Strain YA01T grew at 50–78 °C (optimum, 70 °C) and at pH 5.0–9.5 (optimum, pH 6.5). Strain YA01T mainly produced acetate by consuming d(+)-glucose as a carbon source. The main cellular fatty acids were iso-C17 : 0 (35.7 %), C16 : 0 (33.3 %), DMA16 : 0 (6.6 %) and iso-C15 : 0 (5.9 %). Based on its distinct phylogenetic position, biochemical and physiological characteristics, and the major cellular fatty acids, strain YA01T is considered to represent a novel species of the genus Caldicellulosiruptor for which the name Caldicellulosiruptor diazotrophicus sp. nov. is proposed (type strain YA01T=DSM 112098T=JCM 34253T).


Author(s):  
Veeraya Weerawongwiwat ◽  
Seokmin Yoon ◽  
Jong-Hwa Kim ◽  
Jung-Hoon Yoon ◽  
Jung Sook Lee ◽  
...  

A Gram-stain-negative, aerobic, motile, short rod-shaped, catalase-negative and oxidase-positive bacterium, strain CAU 1568T, was isolated from marine sediment sand sampled at Sido Island in the Republic of Korea. The optimum conditions for growth were at 25–30 °C, at pH 6.5–8.5 and with 0–4.0 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain CAU 1568T was a member of the genus Photobacterium with high similarity to Photobacterium salinisoli JCM 30852T (97.7 %), Photobacterium halotolerans KACC 17089T (97.3 %) and Photobacterium galatheae LMG F28894T (97.3 %). The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1  ω6c and/or C16 : 1  ω7c) and summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c), with Q-8 as the major of isoprenoid quinone. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerols, phosphatidylcholine, phosphatidylethanolamine, phospholipid, two aminophospholipids and three unidentified lipids. The whole genome size of strain CAU 1568T was 4.8 Mb with 50.1 mol% G+C content; including 38 contigs and 4233 protein-coding genes. These taxonomic data support CAU 1568T as representing a novel Photobacterium species, for which the name Photobacterium arenosum sp. nov. is proposed. The type strain of this novel species is CAU 1568T (=KCTC 82404T=MCCC 1K05668T).


2020 ◽  
Vol 70 (9) ◽  
pp. 5032-5039 ◽  
Author(s):  
Jae-Chan Lee ◽  
Kyung-Sook Whang

A Gram-stain-positive actinobacterial strain, designated ANK073T, was isolated from rhizosphere soil sampled at a spinach farming field in Shinan, Republic of Korea. Cells of strain ANK073T were found to be aerobic, non-motile, non-spore-forming rods which could grow at 20–40 °C (optimum, 30 °C), at pH 6.0–10.0 (optimum, pH 6.5–7.5) and at salinities of 0–4 % (w/v) NaCl (optimum, 0 % NaCl). The 16S rRNA gene sequence analysis showed that strain ANK073T belongs to the genus Agromyces with high sequence similarities to Agromyces humatus CD5T (98.8 %), Agromyces tardus SJ-23T (98.5 %) and Agromyces iriomotensis IY07-20T (98.4 %). The phylogenetic analysis indicated that strain ANK073T formed a distinct phyletic line in the genus Agromyces and the results of DNA–DNA relatedness and phylogenomic analysis based on whole genome sequences demonstrated that strain ANK073T could be separated from its closest relatives in the genus Agromyces . The strain contained 2,4-diaminobutylic acid, glycine, d-glutamic acid and d-alanine in the peptidoglycan. The predominant menaquinones were identified as MK-12 and MK-11, and the major fatty acids were anteiso-C17 : 0, anteiso-C15 :  0 and iso-C15:0. The major polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The G+C content of the genome was determined to be 70.2 mol%. On the basis of its phenotypic and chemotaxonomic properties and the results of phylogenetic and phylogenomic analyses, strain ANK073T is considered to represent a novel species in the genus Agromyces , for which the name Agromyces humi sp. nov. is proposed. The type strain is ANK073T (=KACC 18683T=NBRC 111825T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3091-3095 ◽  
Author(s):  
Yan-Qiong Li ◽  
Hui Zhang ◽  
Min Xiao ◽  
Zhou-Yan Dong ◽  
Jing-Yi Zhang ◽  
...  

A Gram-stain-positive, facultatively anaerobic and non-motile strain, designated SYSUP0004T, was isolated from the tubers of Gastrodia elata Blume collected from Yunnan Province, PR China. The 16S rRNA gene sequence result showed that the strain SYSUP0004T shared low similarity (97.7 %) with the type strain of Cellulomonas marina . SYSUP0004T grew at pH 6.0–9.0 (optimum, pH 8.0), temperature 4–30 °C (optimum, 28 °C) and could tolerate NaCl up to 4 % w/v (optimum in the absence of NaCl). The cell-wall peptidoglycan type was A4β with an interpeptide bridge l-ornithine–d-glutamic acid. Cell-wall sugars were mannose, ribose, glucose, galactose and fucose. The menaquinone was MK-9(H4). The major fatty acids were anteiso-C15:0, anteiso-C15 : 1 A, C16 : 0 and anteiso-C17 : 0. The polar lipids of SYSUP0004T were diphosphatidylglycerol, unidentified phosphoglycolipid, phosphatidylinositol mannosides and unidentified glycolipid. The genomic DNA G+C content was 76.5 %. The average nucleotide identity values between SYSUP0004T and members of the genus Cellulomonas were below the cut-off level (95–96 %) recommended as the ANI criterion for interspecies identity. Thus, based on the above results strain SYSUP0004T represents a novel species of the genus Cellulomonas , for which the name Cellulomonas endophytica sp. nov. is proposed. The type strain, SYSUP0004T (=KCTC 49025T=CGMCC 1.16405T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1868-1875 ◽  
Author(s):  
Shan-Hui Li ◽  
Jaeho Song ◽  
Yeonjung Lim ◽  
Yochan Joung ◽  
Ilnam Kang ◽  
...  

A Gram-stain-negative, rod-shaped, aerobic, non-flagellated, chemoheterotrophic bacterium, designated IMCC14385T, was isolated from surface seawater of the East Sea, Republic of Korea. The 16S rRNA gene sequence analysis indicated that IMCC14385T represented a member of the genus Halioglobus sharing 94.6–97.8 % similarities with species of the genus. Whole-genome sequencing of IMCC14385T revealed a genome size of 4.3 Mbp and DNA G+C content of 56.7 mol%. The genome of IMCC14385T shared an average nucleotide identity of 76.6 % and digital DNA–DNA hybridization value of 21.6 % with the genome of Halioglobus japonicus KCTC 23429T. The genome encoded the complete poly-β-hydroxybutyrate biosynthesis pathway. The strain contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C17 : 1 ω8c as the predominant cellular fatty acids as well as ubiquinone-8 (Q-8) as the respiratory quinone. The polar lipids detected in the strain were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, five unidentified phospholipids, an unidentified aminolipid, an unidentified aminophospholipid and four unidentified lipids. On the basis of taxonomic data obtained in this study, it is suggested that IMCC14385T represents a novel species of the genus Halioglobus , for which the name Halioglobus maricola sp. nov. is proposed. The type strain is IMCC14385T (=KCTC 72520T=NBRC 114072T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2418-2423 ◽  
Author(s):  
Xiangjing Wang ◽  
Junwei Zhao ◽  
Chongxi Liu ◽  
Jidong Wang ◽  
Yue Shen ◽  
...  

A novel actinomycete, designated strain NEAU-Z6T, was isolated from eggplant (Solanum melongena L.) root. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain NEAU-Z6T belonged to the genus Nonomuraea , with highest sequence similarity to Nonomuraea monospora PT 708T (98.83 %), Nonomuraea rosea GW 12687T (98.55 %) and Nonomuraea rhizophila YIM 67092T (98.02 %). Sequence similarities between strain NEAU-Z6T and other species of the genus Nonomuraea ranged from 97.94 % ( Nonomuraea candida HMC10T) to 96.30 % ( Nonomuraea wenchangensis 210417T). Key morphological, physiological and chemotaxonomic characteristics of strain NEAU-Z6T were congruent with the description of the genus Nonomuraea . The G+C content of the genomic DNA was 64.51 mol%. DNA–DNA relatedness and comparative analysis of physiological, biochemical and chemotaxonomic data allowed genotypic and phenotypic differentiation of strain NEAU-Z6T from closely related species. Thus, strain NEAU-Z6T represents a novel species of the genus Nonomuraea , for which the name Nonomuraea solani sp. nov. is proposed. The type strain is NEAU-Z6T ( = CGMCC 4.7037T = DSM 45729T).


Sign in / Sign up

Export Citation Format

Share Document