scholarly journals Comparative characterization of the reassortant Orthobunyavirus Ngari with putative parental viruses, Bunyamwera and Batai: in vitro characterization and ex vivo stability

Author(s):  
M. Fausta Dutuze ◽  
E. Handly Mayton ◽  
Joshua D. Macaluso ◽  
Rebecca C. Christofferson

Bunyamwera (BUNV), Batai (BATV) and Ngari (NRIV) are mosquito-borne viruses that are members of the genus Orthobunyavirus in the order Bunyavirales. These three viruses are enveloped with single-stranded, negative-sense RNA genomes consiting of three segments, denoted as Small (S), Medium (M) and Large (L). Ngari is thought to be the natural reassortant progeny of Bunyamwera and Batai viruses. The relationship between these ‘parental’ viruses and the ‘progeny’ poses an interesting question, especially given that there is overlap in their respective transmission ecologies, but differences in their infection host ranges and pathogenesis. We compared the in vivo kinetics of these three viruses in a common laboratory system and found no significant difference in growth kinetics. There was, however, a tendency of BATV to have smaller plaques than either BUNV or NRIV. Furthermore, we determined that all three viruses are stable in extracellular conditions and retain infectivity for a week in non-cellular media, which has public health and biosafety implications. The study of this understudied group of viruses addresses a need for basic characterization of viruses that have not yet reached epidemic transmission intensity, but that have the potential due to their infectivity to both human and animal hosts. These results lay the groundwork for future studies of these neglected viruses of potential public and One Health importance.

2021 ◽  
Vol 109 ◽  
pp. 104751
Author(s):  
Michał Abram ◽  
Anna Rapacz ◽  
Gniewomir Latacz ◽  
Bartłomiej Szulczyk ◽  
Justyna Kalinowska-Tłuścik ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 861
Author(s):  
Elizabeth E. Niedert ◽  
Chenghao Bi ◽  
Georges Adam ◽  
Elly Lambert ◽  
Luis Solorio ◽  
...  

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.


1992 ◽  
Vol 207 (2) ◽  
pp. 687-695 ◽  
Author(s):  
Russell WALLIS ◽  
Ann REILLY ◽  
Arthur ROWE ◽  
Geoffrey R. MOORE ◽  
Richard JAMES ◽  
...  

2010 ◽  
Vol 46 (4) ◽  
pp. 607-616 ◽  
Author(s):  
Daiane Hansen ◽  
Mitsue Haraguchi ◽  
Antonio Alonso

The plant of the genus Pterodon (Fabaceae, Leguminosae), commonly known as 'sucupira' or 'faveira', are disseminated throughout the central region of Brazil and has frequently been used in popular medicine for its anti-rheumatic, analgesic, and anti-inflammatory properties. In recent years, interest in these plants has increased considerably. The biological effects of different phytoextracts and pure metabolites have been investigated in several experimental models in vivo and in vitro. The literature describes flavonoids, triterpene and steroids, while one paper presented studies with proteins isolated from the genus. This review provides an overview of phytochemical and pharmacological research in Pterodon, showing the main chemical compounds studied to date, and focusing on the relationship between these molecules and their biological activity. Furthermore, this study paves the way for more in-depth investigation, isolation and characterization of the molecules of this plant genus.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7236
Author(s):  
Yazan J. Meqbil ◽  
Hongyu Su ◽  
Robert J. Cassell ◽  
Kendall L. Mores ◽  
Anna M. Gutridge ◽  
...  

The δ-opioid receptor (δOR) holds great potential as a therapeutic target. Yet, clinical drug development, which has focused on δOR agonists that mimic the potent and selective tool compound SNC80 have largely failed. It has increasingly become apparent that the SNC80 scaffold carries with it potent and efficacious β-arrestin recruitment. Here, we screened a relatively small (5120 molecules) physical drug library to identify δOR agonists that underrecruit β-arrestin, as it has been suggested that compounds that efficaciously recruit β-arrestin are proconvulsant. The screen identified a hit compound and further characterization using cellular binding and signaling assays revealed that this molecule (R995045, compound 1) exhibited ten-fold selectivity over µ- and κ-opioid receptors. Compound 1 represents a novel chemotype at the δOR. A subsequent characterization of fourteen analogs of compound 1, however did not identify a more potent δOR agonist. Computational modeling and in vitro characterization of compound 1 in the presence of the endogenous agonist leu-enkephalin suggest compound 1 may also bind allosterically and negatively modulate the potency of Leu-enkephalin to inhibit cAMP, acting as a ‘NAM-agonist’ in this assay. The potential physiological utility of such a class of compounds will need to be assessed in future in vivo assays.


2009 ◽  
Vol 19 (3) ◽  
pp. 217-221
Author(s):  
H.M. El-Nahas ◽  
F.S. Ghazy ◽  
H.A. El-Ghamry ◽  
A.M. El-Wsaby

Sign in / Sign up

Export Citation Format

Share Document