scholarly journals Utility of real-time amplification of selected 16S rRNA gene sequences as a tool for detection and identification of microbial signatures directly from clinical samples

2012 ◽  
Vol 61 (5) ◽  
pp. 645-652 ◽  
Author(s):  
Kirstin J. Edwards ◽  
Julie M. J. Logan ◽  
Sally Langham ◽  
Craig Swift ◽  
Saheer E. Gharbia
2010 ◽  
Vol 60 (6) ◽  
pp. 1271-1279 ◽  
Author(s):  
Hélène Marchandin ◽  
Corinne Teyssier ◽  
Josiane Campos ◽  
Hélène Jean-Pierre ◽  
Frédéric Roger ◽  
...  

Three strains of a hitherto unknown, Gram-negative, tiny, anaerobic coccus were collected from human clinical samples originating from skin and soft tissues. The three isolates displayed at least 99.9 % identity in their 16S rRNA gene sequences and more than 99.8 % identity in their dnaK gene sequences. The isolates were affiliated to the family Veillonellaceae, the coccobacillus Dialister micraerophilus being the most closely related species, but there was no more than 91.1 % identity in the 16S rRNA gene sequence between this species and the three isolates. Phylogeny based on the 16S rRNA gene confirmed that the three strains represent a novel and robust lineage within the current family Veillonellaceae. A similar genomic structure was demonstrated for the three isolates by PFGE-based analysis. Morphology and metabolic end products, as well as genotypic and phylogenetic data supported the proposal of the novel genus Negativicoccus gen. nov., with the novel species Negativicoccus succinicivorans sp. nov. [type strain ADV 07/08/06-B-1388T (=AIP 149.07T=CIP 109806T=DSM 21255T=CCUG 56017T) as type species]. Phylogenetic analyses based on the 16S rRNA gene sequences of members of the phylum Firmicutes and other phyla indicated that the family Veillonellaceae forms a robust lineage clearly separated from those of the classes ‘Bacilli’, ‘Clostridia’, Thermolithobacteria and ‘Erysipelotrichi’ in the phylum Firmicutes. Therefore, we propose that this family is a class-level taxon in the phylum Firmicutes, for which the name Negativicutes classis nov. is proposed, based on the Gram-negative type of cell wall of its members, with the type order Selenomonadales ord. nov. In this order, a novel family, Acidaminococcaceae fam. nov., is proposed and description of the family Veillonellaceae is emended.


1999 ◽  
Vol 37 (7) ◽  
pp. 2215-2222 ◽  
Author(s):  
Leo M. Schouls ◽  
Ingrid Van De Pol ◽  
Sjoerd G. T. Rijpkema ◽  
Corrie S. Schot

A sensitive and specific PCR hybridization assay was developed for the simultaneous detection and identification of Ehrlichiaand Borrelia burgdorferi sensu lato. In separate assays the 16S rRNA gene of Ehrlichia species and the 23S-5S rRNA spacer region of B. burgdorferi sensu lato were amplified and labeled by PCR. These PCR products were used in a reverse line blot hybridization assay in which oligonucleotide probes are covalently linked to a membrane in parallel lines. Hybridization of the samples with the oligonucleotide probes on this membrane enabled the simultaneous detection and identification of Ehrlichia,B. burgdorferi, and Bartonella species in 40 different samples. The application of the assay to DNA extracts from 121 Ixodes ricinus ticks collected from roe deer demonstrated that 45% of these ticks carried EhrlichiaDNA. More than half of these positive ticks carried species with 16S rRNA gene sequences closely related to those of E. phagocytophila and the human granulocytic ehrlichiosis agent. The majority of the other positive ticks were infected with a newly identified Ehrlichia-like species. In addition, 13% of the ticks were infected with one or more B. burgdorferigenospecies. In more than 70% of the ticks 16S rRNA gene sequences forBartonella species or other species closely related toBartonella were found. In five of the ticks bothEhrlichia and B. burgdorferi species were detected.


2020 ◽  
Author(s):  
CC Kim ◽  
WJ Kelly ◽  
ML Patchett ◽  
GW Tannock ◽  
Z Jordens ◽  
...  

© 2017 IUMS. A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7% sequence similarity). Strain 14T shared ~99% sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6μm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


2007 ◽  
Vol 73 (20) ◽  
pp. 6682-6685 ◽  
Author(s):  
Daniel P. R. Herlemann ◽  
Oliver Geissinger ◽  
Andreas Brune

ABSTRACT The bacterial candidate phylum Termite Group I (TG-1) presently consists mostly of “Endomicrobia,” which are endosymbionts of flagellate protists occurring exclusively in the hindguts of termites and wood-feeding cockroaches. Here, we show that public databases contain many, mostly undocumented 16S rRNA gene sequences from other habitats that are affiliated with the TG-1 phylum but are only distantly related to “Endomicrobia.” Phylogenetic analysis of the expanded data set revealed several diverse and deeply branching lineages comprising clones from many different habitats. In addition, we designed specific primers to explore the diversity and environmental distribution of bacteria in the TG-1 phylum.


2005 ◽  
Vol 71 (10) ◽  
pp. 6308-6318 ◽  
Author(s):  
Helen A. Vrionis ◽  
Robert T. Anderson ◽  
Irene Ortiz-Bernad ◽  
Kathleen R. O'Neill ◽  
Charles T. Resch ◽  
...  

ABSTRACT The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.


2008 ◽  
Vol 74 (10) ◽  
pp. 3198-3215 ◽  
Author(s):  
Enoma O. Omoregie ◽  
Vincent Mastalerz ◽  
Gert de Lange ◽  
Kristina L. Straub ◽  
Andreas Kappler ◽  
...  

ABSTRACT In this study we determined the composition and biogeochemistry of novel, brightly colored, white and orange microbial mats at the surface of a brine seep at the outer rim of the Chefren mud volcano. These mats were interspersed with one another, but their underlying sediment biogeochemistries differed considerably. Microscopy revealed that the white mats were granules composed of elemental S filaments, similar to those produced by the sulfide-oxidizing epsilonproteobacterium “Candidatus Arcobacter sulfidicus.” Fluorescence in situ hybridization indicated that microorganisms targeted by a “Ca. Arcobacter sulfidicus”-specific oligonucleotide probe constituted up to 24% of the total the cells within these mats. Several 16S rRNA gene sequences from organisms closely related to “Ca. Arcobacter sulfidicus” were identified. In contrast, the orange mat consisted mostly of bright orange flakes composed of empty Fe(III) (hydr)oxide-coated microbial sheaths, similar to those produced by the neutrophilic Fe(II)-oxidizing betaproteobacterium Leptothrix ochracea. None of the 16S rRNA gene sequences obtained from these samples were closely related to sequences of known neutrophilic aerobic Fe(II)-oxidizing bacteria. The sediments below both types of mats showed relatively high sulfate reduction rates (300 nmol·cm−3·day−1) partially fueled by the anaerobic oxidation of methane (10 to 20 nmol·cm−3·day−1). Free sulfide produced below the white mat was depleted by sulfide oxidation within the mat itself. Below the orange mat free Fe(II) reached the surface layer and was depleted in part by microbial Fe(II) oxidation. Both mats and the sediments underneath them hosted very diverse microbial communities and contained mineral precipitates, most likely due to differences in fluid flow patterns.


2007 ◽  
Vol 57 (10) ◽  
pp. 2296-2298 ◽  
Author(s):  
Seong Woon Roh ◽  
Young-Do Nam ◽  
Ho-Won Chang ◽  
Youlboong Sung ◽  
Kyoung-Ho Kim ◽  
...  

A novel, extremely halophilic archaeon B3T was isolated from shrimp-salted seafood. Its morphology, physiology, biochemical features and 16S rRNA gene sequence were characterized. Strain B3T is non-motile, Gram-variable, requires at least 10 % (w/v) NaCl for growth and grows in the ranges of 21–50 °C and pH 6.5–9.0. The DNA G+C content of strain B3T was 63.2 mol%. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain B3T belonged to the genus Halalkalicoccus and was phylogenetically closely related to the type strain Halalkalicoccus tibetensis (98.64 %). However, DNA–DNA hybridization experiments showed 7.0 % relatedness between strain B3T and a strain of a reference species of the genus Halalkalicoccus. Combined analysis of 16S rRNA gene sequences, DNA–DNA relatedness data, physiological and biochemical tests indicated that the genotypic and phenotypic characteristics differentiate strain B3T from other Halalkalicoccus species. On the basis of the evidence presented in this report, strain B3T represents a novel species of the genus Halalkalicoccus, for which the name Halalkalicoccus jeotgali. sp. nov. is proposed. The type strain is B3T (=KCTC 4019T=DSM 18796T=JCM 14584T=CECT 7217T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1606-1611 ◽  
Author(s):  
Enrico Tortoli ◽  
Erik C. Böttger ◽  
Anna Fabio ◽  
Enevold Falsen ◽  
Zoe Gitti ◽  
...  

Four strains isolated in the last 15 years were revealed to be identical in their 16S rRNA gene sequences to MCRO19, the sequence of which was deposited in GenBank in 1995. In a polyphasic analysis including phenotypic and genotypic features, the five strains (including MCRO19), which had been isolated in four European countries, turned out to represent a unique taxonomic entity. They are scotochromogenic slow growers and are genetically related to the group that included Mycobacterium simiae and 15 other species. The novel species Mycobacterium europaeum sp. nov. is proposed to accommodate these five strains. Strain FI-95228T ( = DSM 45397T  = CCUG 58464T) was chosen as the type strain. In addition, a thorough revision of the phenotypic and genotypic characters of the species related to M. simiae was conducted which leads us to suggest the denomination of the ‘Mycobacterium simiae complex’ for this group.


Sign in / Sign up

Export Citation Format

Share Document