scholarly journals Phenotypes and genotypes of macrolide-resistant Streptococcus pyogenes isolated in Seoul, Korea

2007 ◽  
Vol 56 (2) ◽  
pp. 229-235 ◽  
Author(s):  
Sook Young Bae ◽  
Jang Su Kim ◽  
Jung-Ah Kwon ◽  
Soo-Young Yoon ◽  
Chae Seung Lim ◽  
...  

The mechanisms of resistance to macrolides in 51 erythromycin-resistant clinical isolates of Streptococcus pyogenes collected from 1997 through 2003 in Seoul, Korea were evaluated. They were characterized by their antimicrobial susceptibility, phenotype (using triple-disc and induction tests), resistance genotype, emm genotyping (M typing) and phylogenetic analysis. Erythromycin resistance was observed in 23 % of isolates. Inducible phenotype was the most common (iMLS, 51 %, 26 strains), followed by the constitutive phenotype (cMLS, 31 %, 16 strains) and the M phenotype (18 %, 9 strains). Eight of twenty-six iMLS isolates exhibited the iMLS-C phenotype. The remaining 18 isolates gave small inhibition zones (<12 mm) around all three discs, and mild blunting of the spiramycin and clindamycin zones of inhibition proximal to the erythromycin disc. They showed remarkable inducibility in erythromycin and clindamycin resistance. The MIC90 of erythromycin and clindamycin rose from 8 to >128 μg ml−1 and from 0.5 to >128 μg ml−1, respectively. Their resistance characteristics did not fit into any known iMLS subtype reported so far in the literature. So, it was named as an iMLS-D, new subtype. All of these iMLS-D strains harboured the erm(B) gene, demonstrated the emm12 genotype, except one, and formed a tight cluster in a phylogenetic tree, with 89.2 to 100 % sequence homology, suggesting that they are closely related. Nine of sixteen cMLS strains had the emm28 genotype, which had been reported to be associated with multiple drug resistance.

2021 ◽  
Vol 8 ◽  
Author(s):  
Ema Aleksić ◽  
Biljana Miljković-Selimović ◽  
Zoran Tambur ◽  
Nikola Aleksić ◽  
Vladimir Biočanin ◽  
...  

Campylobacter jejuni (C. jejuni) is one of the most frequent causes of bacterial enterocolitis globally. The disease in human is usually self-limiting, but when complications arise antibiotic therapy is required at a time when resistance to antibiotics is increasing worldwide. Mechanisms of antibiotic resistance in bacteria are diverse depending on antibiotic type and usage and include: enzymatic destruction or drug inactivation; alteration of the target enzyme; alteration of cell membrane permeability; alteration of ribosome structure and alteration of the metabolic pathway(s). Resistance of Campylobacter spp. to antibiotics, especially fluoroquinolones is now a major public health problem in developed and developing countries. In this review the mechanisms of resistance to fluoroquinolones, macrolides, tetracycline, aminoglycoside and the role of integrons in resistance of Campylobacter (especially at the molecular level) are discussed, as well as the mechanisms of resistance to β-lactam antibiotics, sulphonamides and trimethoprim. Multiple drug resistance is an increasing problem for treatment of campylobacter infections and emergence of resistant strains and resistance are important One Health issues.


Author(s):  
V Singh ◽  
A B Khyriem, W V Lyngdoh ◽  
C J Lyngdoh

Objectives - Surgical site infections (SSI) has turn out to be a major problem even in hospital with most modern facilities and standard protocols of pre -operative preparation and antibiotic prophylaxis. Objective of this study is to know the prevalence of surgical site infection among the postoperative patients and to identify the relationship between SSI and etiological pathogens along with their antimicrobial susceptibility at North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Shillong. Methods - A retrospective case study conducted at NEIGRIHMS, among patients admitted to the surgical departments during the period between January 1st and December 31st 2016. Swabs from the surgical sites were collected under sterile conditions and standard bacteriological tests were performed for identification and appropriate statistical methods were employed to look for association between SSI and etiological pathogens. Results - Out of the 1284 samples included in the study, 192 samples showed evidence of SSI yielding an infection rate of 14.9%. The most commonly isolated bacteria were: Escherichia coli, Acinetobacter baumanii and Staphylococcus aureus, of the gram negative isolates 6.2% were multidrug resistant of which 19% were carbapenem resistant. Conclusion - SSI with multiple drug resistance strains and polymicrobial etiology reflects therapeutic failure. The outcome of the SSI surveillance in our hospital revealed that in order to decrease the incidence of SSI we would have to: a) incorporate a proper antibiotic stewardship  b) conduct periodic surveillance to keep a check on SSI d) educate medical staffs regarding the prevention of surgical site infection.


2020 ◽  
pp. 68-71
Author(s):  
V. S. Krutko ◽  
L. H. Nikolaieva ◽  
T. V. Maistat ◽  
O. A. Oparin ◽  
Anton Viktorovych Rohozhyn

Tuberculosis is infectious and socially dependent disease, being now one of the most pressing issues in practical health care. As well the usual types of tuberculosis infection, chemoresistant tuberculosis is spreading rapidly in the world. The WHO estimates that about 500,000 people on the planet are infected with M. tuberculosis, which is resistant to standard anti−tuberculosis drugs. The probability of successful treatment decreases with emergence of new genotypes of M. tuberculosis with total resistance. In the modern epidemiology of tuberculosis, it is important to identify genotypes on certain signs, allowing to address issues such as their origin, identification of the infection source, possible routes and factors of transmission, as well as to reveal cases and spread of resistance to anti−tuberculosis drugs. To evaluate the therapy efficiency of multidrug−resistant tuberculosis patients with revealed genotypic variability during treatment, 10 patients with chemoresistant pulmonary tuberculosis having M. tuberculosis genotypic variability were treated. In these patients, the clinical, laboratory and radiological dynamics of disease in intensive phase of treatment were studied. Analysis of treatment results for patients with chemoresistant tuberculosis with genotypic variability of M. tuberculosis was evaluated by the intoxication syndrome dynamics of, the timing of closure of the decay cavities and cessation of bacterial excretion. The study found that the genotypic variability of M. tuberculosis is characterized by the change of less virulent genotypes of M. tuberculosis to more virulent. Signs of intoxication have been shown to change from less virulent M. tuberculosis genotypes to M. tuberculosis Beijing genotypes. Genotypic variability of mycobacteria in hospital suggests that hospitalization in tuberculosis facilities is a risk of exogenous tuberculosis superinfection. Studying the influence of genotypic variability of M. tuberculosis on the course of multidrug−resistant tuberculosis requires more extensive research, being a very relevant and promising area in phthisiology. Key words: Mycobacterium tuberculosis, genotypic variability, VNTR−genotyping, treatment.


2020 ◽  
Vol 85 (12-13) ◽  
pp. 1560-1569
Author(s):  
D. A. Knorre ◽  
K. V. Galkina ◽  
T. Shirokovskikh ◽  
A. Banerjee ◽  
R. Prasad

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 785
Author(s):  
Abubakar Siddique ◽  
Sara Azim ◽  
Amjad Ali ◽  
Saadia Andleeb ◽  
Aitezaz Ahsan ◽  
...  

Salmonellosis caused by non-typhoidal Salmonellaenterica from poultry products is a major public health concern worldwide. This study aimed at estimating the pathogenicity and antimicrobial resistance in S. enterica isolates obtained from poultry birds and their food products from different areas of Pakistan. In total, 95/370 (25.67%) samples from poultry droppings, organs, eggs, and meat were positive for Salmonella. The isolates were further identified through multiplex PCR (mPCR) as Salmonella Typhimurium 14 (14.7%), Salmonella Enteritidis 12 (12.6%), and other Salmonella spp. 69 (72.6%). The phenotypic virulence properties of 95 Salmonella isolates exhibited swimming and/or swarming motility 95 (100%), DNA degrading activity 93 (97.8%), hemolytic activity 92 (96.8%), lipase activity 87 (91.6%), and protease activity 86 (90.5%). The sopE virulence gene known for conferring zoonotic potential was detected in S. Typhimurium (92.8%), S. Enteritidis (100%), and other Salmonella spp. (69.5%). The isolates were further tested against 23 antibiotics (from 10 different antimicrobial groups) and were found resistant against fifteen to twenty-one antibiotics. All isolates showed multiple drug resistance and were found to exhibit a high multiple antibiotic-resistant (MAR) index of 0.62 to 0.91. The strong biofilm formation at 37 °C reflected their potential adherence to intestinal surfaces. There was a significant correlation between antimicrobial resistance and the biofilm formation potential of isolates. The resistance determinant genes found among the isolated strains were blaTEM-1 (59.3%), blaOxA-1 (18%), blaPSE-1 (9.5%), blaCMY-2 (43%), and ampC (8.3%). The detection of zoonotic potential MDR Salmonella in poultry and its associated food products carrying cephalosporin and quinolone resistance genes presents a major threat to the poultry industry and public health.


Sign in / Sign up

Export Citation Format

Share Document