scholarly journals Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history

2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Mireia Coscolla ◽  
Sebastien Gagneux ◽  
Fabrizio Menardo ◽  
Chloé Loiseau ◽  
Paula Ruiz-Rodriguez ◽  
...  

Human tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). The MTBC comprises several human-adapted lineages known as M. tuberculosis sensu stricto, as well as two lineages (L5 and L6) traditionally referred to as Mycobacterium africanum . Strains of L5 and L6 are largely limited to West Africa for reasons unknown, and little is known of their genomic diversity, phylogeography and evolution. Here, we analysed the genomes of 350 L5 and 320 L6 strains, isolated from patients from 21 African countries, plus 5 related genomes that had not been classified into any of the known MTBC lineages. Our population genomic and phylogeographical analyses showed that the unclassified genomes belonged to a new group that we propose to name MTBC lineage 9 (L9). While the most likely ancestral distribution of L9 was predicted to be East Africa, the most likely ancestral distribution for both L5 and L6 was the Eastern part of West Africa. Moreover, we found important differences between L5 and L6 strains with respect to their phylogeographical substructure and genetic diversity. Finally, we could not confirm the previous association of drug-resistance markers with lineage and sublineages. Instead, our results indicate that the association of drug resistance with lineage is most likely driven by sample bias or geography. In conclusion, our study sheds new light onto the genomic diversity and evolutionary history of M. africanum , and highlights the need to consider the particularities of each MTBC lineage for understanding the ecology and epidemiology of TB in Africa and globally.

Author(s):  
Mireia Coscolla ◽  
Daniela Brites ◽  
Fabrizio Menardo ◽  
Chloe Loiseau ◽  
Sonia Borrell ◽  
...  

AbstractHuman tuberculosis is caused by members of the Mycobacterium tuberculosis Complex (MTBC). The MTBC comprises several human-adapted lineages known as M. tuberculosis sensu stricto as well as two lineages (L5 and L6) traditionally referred to as M. africanum. Strains of L5 and L6 are largely limited to West Africa for reasons unknown, and little is known on their genomic diversity, phylogeography and evolution. Here, we analyzed the genomes of 365 L5 and 326 L6 strains, plus five related genomes that had not been classified into any of the known MTBC lineages, isolated from patients from 21 African countries.Our population genomic and phylogeographical analyses show that the unclassified genomes belonged to a new group that we propose to name MTBC Lineage 9 (L9). While the most likely ancestral distribution of L9 was predicted to be East Africa, the most likely ancestral distribution for both L5 and L6 was the Eastern part of West Africa. Moreover, we found important differences between L5 and L6 strains with respect to their phylogeographical substructure, genetic diversity and association with drug resistance. In conclusion, our study sheds new light onto the genomic diversity and evolutionary history of M. africanum, and highlights the need to consider the particularities of each MTBC lineage for understanding the ecology and epidemiology of tuberculosis in Africa and globally.


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 72-79 ◽  
Author(s):  
Adelfia Talà ◽  
Marcello Lenucci ◽  
Antonio Gaballo ◽  
Miriana Durante ◽  
Salvatore M. Tredici ◽  
...  

Strain SPC-1T was isolated from the phyllosphere of Cynara cardunculus L. var. sylvestris (Lamk) Fiori (wild cardoon), a Mediterranean native plant considered to be the wild ancestor of the globe artichoke and cultivated cardoon. This Gram-stain-negative, catalase-positive, oxidase-negative, non-spore-forming, rod-shaped and non-motile strain secreted copious amounts of an exopolysaccharide, formed slimy, viscous, orange-pigmented colonies and grew optimally at around pH 6.0–6.5 and 26–30 °C in the presence of 0–0.5 % NaCl. Phylogenetic analysis based on comparisons of 16S rRNA gene sequences demonstrated that SPC-1T clustered together with species of the genus Sphingomonas sensu stricto. The G+C content of the DNA (66.1 mol%), the presence of Q-10 as the predominant ubiquinone, sym-homospermidine as the predominant polyamine, 2-hydroxymyristic acid (C14 : 0 2-OH) as the major hydroxylated fatty acid, the absence of 3-hydroxy fatty acids and the presence of sphingoglycolipid supported this taxonomic position. 16S rRNA gene sequence analysis showed that SPC-1T was most closely related to Sphingomonas hankookensis ODN7T, Sphingomonas insulae DS-28T and Sphingomonas panni C52T (98.19, 97.91 and 97.11 % sequence similarities, respectively). However, DNA–DNA hybridization analysis did not reveal any relatedness at the species level. Further differences were apparent in biochemical traits, and fatty acid, quinone and polyamine profiles leading us to conclude that strain SPC-1T represents a novel species of the genus Sphingomonas , for which the name Sphingomonas cynarae sp. nov. is proposed; the type strain is SPC-1T ( = JCM 17498T = ITEM 13494T). A component analysis of the exopolysaccharide suggested that it represents a novel type of sphingan containing glucose, rhamnose, mannose and galactose, while glucuronic acid, which is commonly found in sphingans, was not detected.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Carla Mariner-Llicer ◽  
Galo A. Goig ◽  
Laura Zaragoza-Infante ◽  
Manuela Torres-Puente ◽  
Luis Villamayor ◽  
...  

A rapid and accurate diagnostic assay represents an important means to detect Mycobacterium tuberculosis , identify drug-resistant strains and ensure treatment success. Currently employed techniques to diagnose drug-resistant tuberculosis include slow phenotypic tests or more rapid molecular assays that evaluate a limited range of drugs. Whole-genome-sequencing-based approaches can detect known drug-resistance-conferring mutations and novel variations; however, the dependence on growing samples in culture, and the associated delays in achieving results, represents a significant limitation. As an alternative, targeted sequencing strategies can be directly performed on clinical samples at high throughput. This study proposes a targeted sequencing assay to rapidly detect drug-resistant strains of M. tuberculosis using the Nanopore MinION sequencing platform. We designed a single-tube assay that targets nine genes associated with drug resistance to seven drugs and two phylogenetic-determining regions to determine strain lineage and tested it in nine clinical isolates and six sputa. The study’s main aim is to calibrate MinNION variant calling to detect drug-resistance-associated mutations with different frequencies to match the accuracy of Illumina (the current gold-standard sequencing technology) from both culture and sputum samples. After calibrating Nanopore MinION variant calling, we demonstrated 100% agreement between Illumina WGS and our MinION set up to detect known drug resistance and phylogenetic variants in our dataset. Importantly, other variants in the amplicons are also detected, decreasing the recall. We identify minority variants and insertions/deletions as crucial bioinformatics challenges to fully reproduce Illumina WGS results.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Hyo-Young Oh ◽  
Shivakumar S. Jalde ◽  
In-Young Chung ◽  
Yeon-Ji Yoo ◽  
Hye-Jeong Jang ◽  
...  

Introduction. Antipathogenic or antivirulence strategy is to target a virulence pathway that is dispensable for growth, in the hope to mitigate the selection for drug resistance. Hypothesis/Gap Statment. Peroxide stress responses are one of the conserved virulence pathways in bacterial pathogens and thus good targets for antipathogenic strategy. Aim. This study aims to identify a new chemical compound that targets OxyR, the peroxide sensor required for the full virulence of the opportunistic human pathogen, Pseudomonas aeruginosa . Methodology. Computer-based virtual screening under consideration of the ‘eNTRy’ rules and molecular docking were conducted on the reduced form of the OxyR regulatory domain (RD). Selected hits were validated by their ability to phenocopy the oxyR null mutant and modulate the redox cycle of OxyR. Results. We first isolated three robust chemical hits that inhibit OxyR without affecting prototrophic growth or viability. One (compound 1) of those affected the redox cycle of OxyR in response to H2O2 treatment, in a way to impair its function. Compound 1 displayed selective antibacterial efficacy against P. aeruginosa in Drosophila infection model, without antibacterial activity against Staphylococcus aureus . Conclusion. These results suggest that compound 1 could be an antipathogenic hit inhibiting the P. aeruginosa OxyR. More importantly, our study provides an insight into the computer-based discovery of new-paradigm selective antibacterials to treat Gram-negative bacterial infections presumably with few concerns of drug resistance.


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Si-Nguyen T. Mai ◽  
Ladaporn Bodhidatta ◽  
Paul Turner ◽  
Sonam Wangchuk ◽  
Tuyen Ha Thanh ◽  
...  

Shigella flexneri serotype 6 is an understudied cause of diarrhoeal diseases in developing countries, and has been proposed as one of the major targets for vaccine development against shigellosis. Despite being named as S. flexneri , Shigella flexneri serotype 6 is phylogenetically distinct from other S. flexneri serotypes and more closely related to S. boydii . This unique phylogenetic relationship and its low sampling frequency have hampered genomic research on this pathogen. Herein, by utilizing whole genome sequencing (WGS) and analyses of Shigella flexneri serotype 6 collected from epidemiological studies (1987–2013) in four Asian countries, we revealed its population structure and evolutionary history in the region. Phylogenetic analyses supported the delineation of Asian Shigella flexneri serotype 6 into two phylogenetic groups (PG-1 and −2). Notably, temporal phylogenetic approaches showed that extant Asian S. flexneri serotype 6 could be traced back to an inferred common ancestor arising in the 18th century. The dominant lineage PG-1 likely emerged in the 1970s, which coincided with the times to most recent common ancestors (tMRCAs) inferred from other major Southeast Asian S. flexneri serotypes. Similar to other S. flexneri serotypes in the same period in Asia, genomic analyses showed that resistance to first-generation antimicrobials was widespread, while resistance to more recent first-line antimicrobials was rare. These data also showed a number of gene inactivation and gene loss events, particularly on genes related to metabolism and synthesis of cellular appendages, emphasizing the continuing role of reductive evolution in the adaptation of the pathogen to an intracellular lifestyle. Together, our findings reveal insights into the genomic evolution of the understudied Shigella flexneri serotype 6, providing a new piece in the puzzle of Shigella epidemiology and evolution.


2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Madikay Senghore ◽  
Peggy-Estelle Tientcheu ◽  
Archibald Kwame Worwui ◽  
Sheikh Jarju ◽  
Catherine Okoi ◽  
...  

Despite contributing to the large disease burden in West Africa, little is known about the genomic epidemiology of Streptococcus pneumoniae which cause meningitis among children under 5 years old in the region. We analysed whole-genome sequencing data from 185  S . pneumoniae isolates recovered from suspected paediatric meningitis cases as part of the World Health Organization (WHO) invasive bacterial diseases surveillance from 2010 to 2016. The phylogeny was reconstructed, accessory genome similarity was computed and antimicrobial-resistance patterns were inferred from the genome data and compared to phenotypic resistance from disc diffusion. We studied the changes in the distribution of serotypes pre- and post-pneumococcal conjugate vaccine (PCV) introduction in the Central and Western sub-regions separately. The overall distribution of non-vaccine, PCV7 (4, 6B, 9V, 14, 18C, 19F and 23F) and additional PCV13 serotypes (1, 3, 5, 6A, 19A and 7F) did not change significantly before and after PCV introduction in the Central region (Fisher's test P value 0.27) despite an increase in the proportion of non-vaccine serotypes to 40 % (n=6) in the post-PCV introduction period compared to 21.9 % (n=14). In the Western sub-region, PCV13 serotypes were more dominant among isolates from The Gambia following the introduction of PCV7, 81 % (n=17), compared to the pre-PCV period in neighbouring Senegal, 51 % (n=27). The phylogeny illustrated the diversity of strains associated with paediatric meningitis in West Africa and highlighted the existence of phylogeographical clustering, with isolates from the same sub-region clustering and sharing similar accessory genome content. Antibiotic-resistance genotypes known to confer resistance to penicillin, chloramphenicol, co-trimoxazole and tetracycline were detected across all sub-regions. However, there was no discernible trend linking the presence of resistance genotypes with the vaccine introduction period or whether the strain was a vaccine or non-vaccine serotype. Resistance genotypes appeared to be conserved within selected sub-clades of the phylogenetic tree, suggesting clonal inheritance. Our data underscore the need for continued surveillance on the emergence of non-vaccine serotypes as well as chloramphenicol and penicillin resistance, as these antibiotics are likely still being used for empirical treatment in low-resource settings. This article contains data hosted by Microreact.


Author(s):  
Catharine R. Carlin ◽  
Jingqiu Liao ◽  
Dan Weller ◽  
Xiaodong Guo ◽  
Renato Orsi ◽  
...  

A total of 27 Listeria isolates that could not be classified to the species level were obtained from soil samples from different locations in the contiguous United States and an agricultural water sample from New York. Whole-genome sequence-based average nucleotide identity blast (ANIb) showed that the 27 isolates form five distinct clusters; for each cluster, all draft genomes showed ANI values of <95 % similarity to each other and any currently described Listeria species, indicating that each cluster represents a novel species. Of the five novel species, three cluster with the Listeria sensu stricto clade and two cluster with sensu lato. One of the novel sensu stricto species, designated L. cossartiae sp. nov., contains two subclusters with an average ANI similarity of 94.9%, which were designated as subspecies. The proposed three novel sensu stricto species (including two subspecies) are Listeria farberi sp. nov. (type strain FSL L7-0091T=CCUG 74668T=LMG 31917T; maximum ANI 91.9 % to L. innocua ), Listeria immobilis sp. nov. (type strain FSL L7-1519T=CCUG 74666T=LMG 31920T; maximum ANI 87.4 % to L. ivanovii subsp. londoniensis ) and Listeria cossartiae sp. nov. [subsp. cossartiae (type strain FSL L7-1447T=CCUG 74667T=LMG 31919T; maximum ANI 93.4 % to L. marthii ) and subsp. cayugensis (type strain FSL L7-0993T=CCUG 74670T=LMG 31918T; maximum ANI 94.7 % to L. marthii ). The two proposed novel sensu lato species are Listeria portnoyi sp. nov. (type strain FSL L7-1582T=CCUG 74671T=LMG 31921T; maximum ANI value of 88.9 % to L. cornellensis and 89.2 % to L. newyorkensis ) and Listeria rustica sp. nov. (type strain FSL W9-0585T=CCUG 74665T=LMG 31922T; maximum ANI value of 88.7 % to L. cornellensis and 88.9 % to L . newyorkensis ). L. immobilis is the first sensu stricto species isolated to date that is non-motile. All five of the novel species are non-haemolytic and negative for phosphatidylinositol-specific phospholipase C activity; the draft genomes lack the virulence genes found in Listeria pathogenicity island 1 (LIPI-1), and the internalin genes inlA and inlB, indicating that they are non-pathogenic.


2021 ◽  
Vol 70 (11) ◽  
Author(s):  
Wenjia Liu ◽  
Nanjiao Ying ◽  
Qiusi Mo ◽  
Shanshan Li ◽  
Mengjie Shao ◽  
...  

Introduction. Klebsiella pneumoniae , a gram-negative bacterium, is a common pathogen causing nosocomial infection. The drug-resistance rate of K. pneumoniae is increasing year by year, posing a severe threat to public health worldwide. K. pneumoniae has been listed as one of the pathogens causing the global crisis of antimicrobial resistance in nosocomial infections. We need to explore the drug resistance of K. pneumoniae for clinical diagnosis. Single nucleotide polymorphisms (SNPs) are of high density and have rich genetic information in whole-genome sequencing (WGS), which can affect the structure or expression of proteins. SNPs can be used to explore mutation sites associated with bacterial resistance. Hypothesis/Gap Statement. Machine learning methods can detect genetic features associated with the drug resistance of K. pneumoniae from whole-genome SNP data. Aims. This work used Fast Feature Selection (FFS) and Codon Mutation Detection (CMD) machine learning methods to detect genetic features related to drug resistance of K. pneumoniae from whole-genome SNP data. Methods. WGS data on resistance of K. pneumoniae strains to four antibiotics (tetracycline, gentamicin, imipenem, amikacin) were downloaded from the European Nucleotide Archive (ENA). Sequence alignments were performed with MUMmer 3 to complete SNP calling using K. pneumoniae HS11286 chromosome as the reference genome. The FFS algorithm was applied to feature selection of the SNP dataset. The training set was constructed based on mutation sites with mutation frequency >0.995. Based on the original SNP training set, 70% of SNPs were randomly selected from each dataset as the test set to verify the accuracy of the training results. Finally, the resistance genes were obtained by the CMD algorithm and Venny. Results. The number of strains resistant to tetracycline, gentamicin, imipenem and amikacin was 931, 1048, 789 and 203, respectively. Machine learning algorithms were applied to the SNP training set and test set, and 28 and 23 resistance genes were predicted, respectively. The 28 resistance genes in the training set included 22 genes in the test set, which verified the accuracy of gene prediction. Among them, some genes (KPHS_35310, KPHS_18220, KPHS_35880, etc.) corresponded to known resistance genes (Eef2, lpxK, MdtC, etc). Logistic regression classifiers were established based on the identified SNPs in the training set. The area under the curves (AUCs) of the four antibiotics was 0.939, 0.950, 0.912 and 0.935, showing a strong ability to predict bacterial resistance. Conclusion. Machine learning methods can effectively be used to predict resistance genes and associated SNPs. The FFS and CMD algorithms have wide applicability. They can be used for the drug-resistance analysis of any microorganism with genomic variation and phenotypic data. This work lays a foundation for resistance research in clinical applications.


Author(s):  
Kathryn C. Hunter ◽  
Paul A. Lawson ◽  
Scot E. Dowd ◽  
R. W. McLaughlin

A strict anaerobic, Gram-stain-positive rod-shaped bacterium, designated PTT, was isolated from the faecal material of a painted turtle (Chrysemys picta). Based on a comparative 16S rRNA gene sequence analysis, the isolate was assigned to Clostridium sensu stricto with the highest sequence similarities to Clostridium moniliforme (97.4 %), Clostridium sardiniense (97.2 %) and the misclassified organism Eubacterium multiforme (97.1 %). The predominant cellular fatty acids of strain PTT were C14 : 0, C16 : 0 and an unidentified product with an equivalent chain length of 14.969. The G+C content determined from the genome was 28.8 mol%. The fermentation end products from glucose were acetate and butyrate with no alcohols detected and trace amounts of CO2 and H2 also detected; no respiratory quinones were detected. Based on biochemical, phylogenetic, genotypic and chemotaxonomic criteria, the isolate represents a novel species of the genus Clostridium for which the name Clostridium chrysemydis sp. nov. is proposed. The type strain is strain PTT (=CCUG 74180T=ATCC TSD-219T).


Author(s):  
Bahareh Nowruzi ◽  
Fabiana Soares

In Iran, polyphasic studies of unicellular cyanobacteria are still scarce, with more emphasis being placed on filamentous cyanobacteria in paddy fields and fresh water regions. In an effort to increase the knowledge of the diversity of unicellular cyanobacteria from paddy fields in Iran, we have isolated and characterized a new unicellular cyanobacterium strain. The strain was studied using a polyphasic approach based on morphological, ecological and phylogenetic analyses of the 16S–23S ITS rRNA gene region. Complementarily, we have searched for the presence of cyanotoxin genes and analysed the pigment content of the strain. Results showed that the strain was morphologically indistinguishable from the genus Chroococcus , but phylogenetic analyses based on the Bayesian inference and maximum-likelihood methods placed the strain in a separated monophyletic and highly supported (0.99/98, posterior probability/maximum-likelihood) genus-level cluster, distant from Chroococcus sensu stricto and with Chalicogloea cavernicola as sister taxa. The calculated p-distance for the 16S rRNA gene also reinforced the presence of a new genus, by showing 92 % similarity to C. cavernicola . The D1–D1′, Box-B and V3 ITS secondary structures showed the uniqueness of this strain, as it shared no similar pattern with closest genera within the Chroococcales. For all these reasons, and in accordance with the International Code of Nomenclature for Algae, Fungi and Plants, we here proposed the description of a new genus with the name Alborzia gen. nov. along with the description of a new species, Alborzia kermanshahica sp. nov. (holotype: CCC1399-a; reference strains CCC1399-b; MCC 4116).


Sign in / Sign up

Export Citation Format

Share Document