scholarly journals RFPlasmid: predicting plasmid sequences from short-read assembly data using machine learning

2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Linda van der Graaf-van Bloois ◽  
Jaap A. Wagenaar ◽  
Aldert L. Zomer

Antimicrobial-resistance (AMR) genes in bacteria are often carried on plasmids and these plasmids can transfer AMR genes between bacteria. For molecular epidemiology purposes and risk assessment, it is important to know whether the genes are located on highly transferable plasmids or in the more stable chromosomes. However, draft whole-genome sequences are fragmented, making it difficult to discriminate plasmid and chromosomal contigs. Current methods that predict plasmid sequences from draft genome sequences rely on single features, like k-mer composition, circularity of the DNA molecule, copy number or sequence identity to plasmid replication genes, all of which have their drawbacks, especially when faced with large single-copy plasmids, which often carry resistance genes. With our newly developed prediction tool RFPlasmid, we use a combination of multiple features, including k-mer composition and databases with plasmid and chromosomal marker proteins, to predict whether the likely source of a contig is plasmid or chromosomal. The tool RFPlasmid supports models for 17 different bacterial taxa, including Campylobacter , Escherichia coli and Salmonella , and has a taxon agnostic model for metagenomic assemblies or unsupported organisms. RFPlasmid is available both as a standalone tool and via a web interface.

Author(s):  
Linda van der Graaf van Bloois ◽  
Jaap A. Wagenaar ◽  
Aldert L. Zomer

AbstractAntimicrobial resistance (AMR) genes in bacteria are often carried on plasmids and these plasmids can transfer AMR genes between bacteria. For molecular epidemiology purposes and risk assessment, it is important to know if the genes are located on highly transferable plasmids or in the more stable chromosomes. However, draft whole genome sequences are fragmented, making it difficult to discriminate plasmid and chromosomal contigs. Current methods that predict plasmid sequences from draft genome sequences rely on single features, like k-mer composition, circularity of the DNA molecule, copy number or sequence identity to plasmid replication genes, all of which have their drawbacks, especially when faced with large single copy plasmids, which often carry resistance genes. With our newly developed prediction tool RFPlasmid, we use a combination of multiple features, including k-mer composition and databases with plasmid and chromosomal marker proteins, to predict if the likely source of a contig is plasmid or chromosomal. The tool RFPlasmid supports models for 17 different bacterial species, including Campylobacter, E. coli, and Salmonella, and has a species agnostic model for metagenomic assemblies or unsupported organisms. RFPlasmid is available both as standalone tool and via web interface.


2020 ◽  
Vol 9 (31) ◽  
Author(s):  
Yui Sato ◽  
Juliane Wippler ◽  
Cecilia Wentrup ◽  
Tanja Woyke ◽  
Nicole Dubilier ◽  
...  

ABSTRACT Here, we present two high-quality, draft metagenome-assembled genomes of deltaproteobacterial OalgDelta3 endosymbionts from the gutless marine worm Olavius algarvensis. Their 16S rRNA gene sequences share 98% identity with Delta3 endosymbionts of related host species Olavius ilvae (GenBank accession no. AJ620501) and Inanidrilus exumae (GenBank accession no. FM202060), for which no symbiont genomes are available.


Author(s):  
John A. Kyndt ◽  
Dayana Montano Salama ◽  
Terrance E. Meyer ◽  
Johannes F. Imhoff

The draft genome sequences of five species of named phototrophic heliobacteria in the order Clostridiales were determined. Whole genome phylogenetic and average nucleotide identity comparison for the heliobacteria suggests that Heliobacterium chlorum and Heliobacillus mobilis are closely related to one another and belong to the same genus. The three species Heliobacterium modesticaldum , Heliobacterium undosum and Heliobacterium gestii all belong in the same genus, but are more divergent from Hbt. chlorum and belong in a separate genus, which we suggest to be called Heliomicrobium. Heliorestis convoluta is properly recognized to be in the same genus as Heliorestis acidaminivorans. Heliophilum fasciatum is clearly unlike any other and rightfully belongs in a separate genus.


2019 ◽  
Vol 8 (16) ◽  
Author(s):  
Aleksey A. Vatlin ◽  
Kirill V. Shur ◽  
Valery N. Danilenko ◽  
Dmitry A. Maslov

Here, we report 12 draft genome sequences of mutant Mycolicibacterium smegmatis strains resistant to imidazo[1,2-b][1,2,4,5]tetrazines, which are antituberculosis drug candidates. We have identified 7 different mutations in the MSMEG_1380 gene, which encodes the AcrR/TetR_N transcriptional repressor, which may activate efflux-mediated resistance.


2019 ◽  
Vol 8 (34) ◽  
Author(s):  
Hazuki Yamashita ◽  
Takayuki Wada ◽  
Yusuke Kato ◽  
Takuji Ikeda ◽  
Masayuki Imajoh

Flavobacterium psychrophilum is a Gram-negative, psychrophilic bacterium within the family Flavobacteriaceae. Here, we report the draft genome sequences of three F. psychrophilum strains isolated from skin ulcers of diseased ayu caught by tomozuri angling at three sites in the Kagami River in Japan.


2018 ◽  
Vol 7 (9) ◽  
Author(s):  
Allison L. Denny ◽  
Susan E. Arruda

Draft genomes of two strains of Escherichia coli, FP2 and FP3, isolated from the feces of the Canada goose (Branta canadensis), were sequenced. Genome sizes were 5.26 Mb with a predicted G+C content of 50.54% (FP2) and 5.07 Mb with a predicted G+C content of 50.41% (FP3).


2017 ◽  
Vol 5 (9) ◽  
Author(s):  
Norazah Ahmad ◽  
Shirley Yi Fen Hii ◽  
Mohd Khairul Nizam Mohd Khalid ◽  
Muhammad Adib Abd Wahab ◽  
Rohaidah Hashim ◽  
...  

ABSTRACT Corynebacterium diphtheriae has caused multiple isolated diphtheria cases in Malaysia over the years. Here, we report the first draft genome sequences of 15 Malaysia C. diphtheriae clinical isolates collected from the years 1981 to 2016.


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 316-324 ◽  
Author(s):  
Jongsik Chun ◽  
Fred A. Rainey

The polyphasic approach used today in the taxonomy and systematics of the Bacteria and Archaea includes the use of phenotypic, chemotaxonomic and genotypic data. The use of 16S rRNA gene sequence data has revolutionized our understanding of the microbial world and led to a rapid increase in the number of descriptions of novel taxa, especially at the species level. It has allowed in many cases for the demarcation of taxa into distinct species, but its limitations in a number of groups have resulted in the continued use of DNA–DNA hybridization. As technology has improved, next-generation sequencing (NGS) has provided a rapid and cost-effective approach to obtaining whole-genome sequences of microbial strains. Although some 12 000 bacterial or archaeal genome sequences are available for comparison, only 1725 of these are of actual type strains, limiting the use of genomic data in comparative taxonomic studies when there are nearly 11 000 type strains. Efforts to obtain complete genome sequences of all type strains are critical to the future of microbial systematics. The incorporation of genomics into the taxonomy and systematics of the Bacteria and Archaea coupled with computational advances will boost the credibility of taxonomy in the genomic era. This special issue of International Journal of Systematic and Evolutionary Microbiology contains both original research and review articles covering the use of genomic sequence data in microbial taxonomy and systematics. It includes contributions on specific taxa as well as outlines of approaches for incorporating genomics into new strain isolation to new taxon description workflows.


2017 ◽  
Vol 5 (39) ◽  
Author(s):  
Paul A. Beare ◽  
Brendan M. Jeffrey ◽  
Craig A. Martens ◽  
Talima Pearson ◽  
Robert A. Heinzen

ABSTRACT Here, we report draft genome sequences of historical strains of Coxiella burnetii derived from cow’s milk and the placenta of a goat that had aborted. The California and Ohio milk strains display a different sequence type than do contemporary milk strains.


2018 ◽  
Vol 6 (15) ◽  
pp. e00295-18
Author(s):  
Alexander Fortuna ◽  
Ricardo Ramnarine ◽  
Aimin Li ◽  
Nahuel Fittipaldi ◽  
Christine Frantz ◽  
...  

ABSTRACT Legionella pneumophila outbreak investigations require the development of reliable typing methods to better understand the genetic relationships of the isolates involved. Here, we report the draft genome sequences of four clinical Legionella pneumophila isolates obtained between 2000 and 2012 in Ontario, Canada.


Sign in / Sign up

Export Citation Format

Share Document