scholarly journals R-type bacteriocins of Xenorhabdus bovienii determine the outcome of interspecies competition in a natural host environment

Microbiology ◽  
2020 ◽  
Vol 166 (11) ◽  
pp. 1074-1087
Author(s):  
Kishore Reddy Venkata Thappeta ◽  
Kristin Ciezki ◽  
Nydia Morales-Soto ◽  
Shane Wesener ◽  
Heidi Goodrich-Blair ◽  
...  

Xenorhabdus species are bacterial symbionts of Steinernema nematodes and pathogens of susceptible insects. Different species of Steinernema nematodes carrying specific species of Xenorhabdus can invade the same insect, thereby setting up competition for nutrients within the insect environment. While Xenorhabdus species produce both diverse antibiotic compounds and prophage-derived R-type bacteriocins (xenorhabdicins), the functions of these molecules during competition in a host are not well understood. Xenorhabdus bovienii (Xb-Sj), the symbiont of Steinernema jollieti, possesses a remnant P2-like phage tail cluster, xbp1, that encodes genes for xenorhabdicin production. We show that inactivation of either tail sheath (xbpS1) or tail fibre (xbpH1) genes eliminated xenorhabdicin production. Preparations of Xb-Sj xenorhabdicin displayed a narrow spectrum of activity towards other Xenorhabdus and Photorhabdus species. One species, Xenorhabdus szentirmaii (Xsz-Sr), was highly sensitive to Xb-Sj xenorhabdicin but did not produce xenorhabdicin that was active against Xb-Sj. Instead, Xsz-Sr produced high-level antibiotic activity against Xb-Sj when grown in complex medium and lower levels when grown in defined medium (Grace’s medium). Conversely, Xb-Sj did not produce detectable levels of antibiotic activity against Xsz-Sr. To study the relative contributions of Xb-Sj xenorhabdicin and Xsz-Sr antibiotics in interspecies competition in which the respective Xenorhabdus species produce antagonistic activities against each other, we co-inoculated cultures with both Xenorhabdus species. In both types of media Xsz-Sr outcompeted Xb-Sj, suggesting that antibiotics produced by Xsz-Sr determined the outcome of the competition. In contrast, Xb-Sj outcompeted Xsz-Sr in competitions performed by co-injection in the insect Manduca sexta, while in competition with the xenorhabdicin-deficient strain (Xb-Sj:S1), Xsz-Sr was dominant. Thus, xenorhabdicin was required for Xb-Sj to outcompete Xsz-Sr in a natural host environment. These results highlight the importance of studying the role of antagonistic compounds under natural biological conditions.

2021 ◽  
Vol 7 (5) ◽  
Author(s):  
Rudielle de Arruda Rodrigues ◽  
Flábio Ribeiro Araújo ◽  
Alberto Martín Rivera Dávila ◽  
Rodrigo Nestor Etges ◽  
Julian Parkhill ◽  
...  

Mycobacterium bovis is a causal agent of bovine tuberculosis (bTB), one of the most important diseases currently facing the cattle industry worldwide. Tracing the source of M. bovis infections of livestock is an important tool for understanding the epidemiology of bTB and defining control/eradication strategies. In this study, whole genome sequencing (WGS) of 74 M . bovis isolates sourced from naturally infected cattle in the State of Rio Grande do Sul (RS), southern Brazil, was used to evaluate the population structure of M. bovis in the region, identify potential transmission events and date the introduction of clonal complex (CC) European 2 (Eu2). In silico spoligotyping identified 11 distinct patterns including four new profiles and two CCs, European 1 (Eu1) and Eu2. The analyses revealed a high level of genetic diversity in the majority of herds and identified putative transmission clusters that suggested that within- and between-herd transmission is occurring in RS. In addition, a comparison with other published M. bovis isolates from Argentina, Brazil, Paraguay and Uruguay demonstrated some evidence for a possible cross-border transmission of CC Eu1 into RS from Uruguay or Argentina. An estimated date for the introduction of CC Eu2 into RS in the middle of the 19th century correlated with the historical introduction of cattle into RS to improve existing local breeds. These findings contribute to the understanding of the population structure of M. bovis in southern Brazil and highlight the potential of WGS in surveillance and helping to identify bTB transmission.


Author(s):  
Aleksandra Trościańczyk ◽  
Aneta Nowakiewicz ◽  
Sebastian Gnat ◽  
Dominik Łagowski ◽  
Marcelina Osińska ◽  
...  

Introduction. The possible transfer of antimicrobial resistance genes between Enterococcus faecium isolates from humans and different animal species, including those not covered by monitoring programs (e.g. pet and wildlife), poses a serious threat to public health. Hypothesis/Gap Statement. Little is known about occurrence and mechanisms of phenomenon of multidrug resistance of E. faecium isolated from various host species in Poland. Aim. The aim of the study was to characterize multidrug-resistant E. faecium isolated from humans and animals (livestock, pets and wildlife) in terms of the occurrence of genetic markers determining resistance. Methodology. Bacterial isolates were tested for phenotypic resistance and the presence of genes encoding resistance to macrolides, tetracycline, aminoglycosides, aminocyclitols and phenicols as well as efflux pump (emeA), resolvase (tndX) and integrase (Int-Tn) genes. The quinolone resistance-determining regions of gyrA and parC were sequenced. Results. Human isolates of E. faecium were characterized by high-level resistance to: ciprofloxacin, enrofloxacin, erythromycin (100 %), as well, as aminoglycosides resistance (kanamycin – 100%, streptomycin – 78 %, gentamicin – 78%). Regardless of the animal species, high level of resistance of E. faecium to tetracycline (from 88–100 %), erythromycin (from 82–94 %) and kanamycin (from 36–100 %) was observed. All E. faecium isolates from wildlife were resistant to fluoroquinolones. However, full susceptibility to vancomycin was observed in all isolates tested. Phenotypic antimicrobial resistance of E. faecium was identified in the presence of the following resistance genes: erm(B) (70%), msr(A) (50 %), tet(L) (35 %), tet(K) (34 %), tet(M) (76 %), aac(6’)-Ie-aph(2″)-Ia (25%), ant(6)-Ia (31%), aph(3)-IIIa (68 %), (tndX) (23 %), and integrase gene (Int-Tn) (34 %). A correlation between an amino acid substitution at positions 83 and 87 of gyrA and position 80 of parC and the high-level fluoroquinolone resistance in E. faecium has been observed as well. Conclusion. The level and range of antimicrobial resistance and the panel of resistance determinants is comparable between E. faecium isolates, despite host species.


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3777-3781 ◽  
Author(s):  
Christine Martineau ◽  
Céline Villeneuve ◽  
Florian Mauffrey ◽  
Richard Villemur

A budding prosthecate bacterial strain, designated NL23T, was isolated from a methanol-fed denitrification system treating seawater at the Montreal Biodome, Canada. Phylogenetic analysis based on 16S rRNA (rRNA) gene sequences showed that the strain was affiliated with the genus Hyphomicrobium of the Alphaproteobacteria and was most closely related to Hyphomicrobium zavarzinii with 99.4 % sequence similarity. Despite this high level of 16S rRNA gene sequence similarity, DNA–DNA hybridization assays showed that strain NL23T was only distantly related to H. zavarzinii ZV-622T (12 %). Strain NL23T grew aerobically, but also had the capacity to grow under denitrifying conditions in the presence of nitrate without nitrite accumulation. Growth occurred at pH 7.0–9.5, with 0–1 % NaCl and at temperatures of 15–35 °C. Major fatty acids were C18 : 1ω7c or ω6c (84.6 %) and C18 : 0 (8.5 %), and major quinones were Q8 (5 %) and Q9 (95 %). The complete genome of the strain was sequenced and showed a DNA G+C content of 63.8 mol%. Genome analysis predicted open reading frames (ORF) encoding the key enzymes of the serine pathway as well as enzymes involved in methylotrophy. Also, ORF encoding a periplasmic nitrate reductase (Nap), a nitrite reductase (Nir), a nitric oxide reductase (Nor) and a nitrous oxide reductase (Nos) were identified. Our results support that strain NL23T represents a novel species within the genus Hyphomicrobium , for which the name Hyphomicrobium nitrativorans sp. nov. is proposed. The type strain is NL23T ( = ATCC BAA-2476T = LMG 27277T).


Microbiology ◽  
2021 ◽  
Vol 167 (5) ◽  
Author(s):  
Luke R. Joyce ◽  
Ziqiang Guan ◽  
Kelli L. Palmer

Streptococcus pneumoniae , S. pyogenes (Group A Streptococcus ; GAS) and S. agalactiae (Group B Streptococcus ; GBS) are major aetiological agents of diseases in humans. The cellular membrane, a crucial site in host–pathogen interactions, is poorly characterized in streptococci. Moreover, little is known about whether or how environmental conditions influence their lipid compositions. Using normal phase liquid chromatography coupled with electrospray ionization MS, we characterized the phospholipids and glycolipids of S. pneumoniae , GAS and GBS in routine undefined laboratory medium, streptococcal defined medium and, in order to mimic the host environment, defined medium supplemented with human serum. In human serum-supplemented medium, all three streptococcal species synthesize phosphatidylcholine (PC), a zwitterionic phospholipid commonly found in eukaryotes but relatively rare in bacteria. We previously reported that S. pneumoniae utilizes the glycerophosphocholine (GPC) biosynthetic pathway to synthesize PC. Through substrate tracing experiments, we confirm that GAS and GBS scavenge lysoPC, a major metabolite in human serum, thereby using an abbreviated GPC pathway for PC biosynthesis. Furthermore, we found that plasmanyl-PC is uniquely present in the GBS membrane during growth with human serum, suggesting GBS possesses unusual membrane biochemical or biophysical properties. In summary, we report cellular lipid remodelling by the major pathogenic streptococci in response to metabolites present in human serum.


Author(s):  
Stephen L. W. On ◽  
William G. Miller ◽  
Patrick J. Biggs ◽  
Angela J. Cornelius ◽  
Peter Vandamme

This paper re-examines the taxonomic positions of recently described Poseidonibacter (P. parvum and P. antarcticus ), Aliarcobacter (‘Al. vitoriensis’), Halarcobacter (‘H. arenosus’) and Arcobacter ( A. caeni , A. lacus ) species, and other species proposed to represent novel genera highly related to the genus Arcobacter . Phylogenomic and several overall genome relatedness indices (OGRIs) were applied to a total of 118 representative genomes for this purpose. Phylogenomic analyses demonstrated the Arcobacter clade to be distinct from other Epsilonproteobacteria , clearly defined and containing closely related species. Aliarcobacter butzleri and Malaciobacter pacificus did not cluster with other members of these proposed genera, indicating incoherence of these genera. Every OGRI measure applied indicated a high level of relatedness among all Arcobacter clade species, including the recently described taxa studied here, and substantially lower between type species representatives for other Epsilonproteobacteria. Where published guidelines were available, OGRI values for Arcobacter clade species were either unsupportive of division into other genera or were at the lowest boundary range (for average amino acid identity). We propose that Aliarcobacter , Halarcobacter , Malaciobacter , Pseudarcobacter , Poseidonibacter and Arcobacter sensu stricto be considered members of a single genus, Arcobacter , and subsequently transfer P. parvum, P. antarcticus , ‘ Al. vitoriensis ’ and ‘H. arenosus’ to Arcobacter as Arcobacter parvum comb. nov., Arcobacter antarcticus comb. nov., Arcobacter vitoriensis comb. nov. and Arcobacter arenosus comb. nov.


2020 ◽  
Vol 69 (12) ◽  
pp. 1346-1350
Author(s):  
Yoshitomo Morinaga ◽  
Hiromichi Suzuki ◽  
Shigeyuki Notake ◽  
Takashi Mizusaka ◽  
Keiichi Uemura ◽  
...  

Introduction. Resistance against macrolide antibiotics in Mycoplasma pneumoniae is becoming non-negligible in terms of both appropriate therapy and diagnostic stewardship. Molecular methods have attractive features for the identification of Mycoplasma pneumoniae as well as its resistance-associated mutations of 23S ribosomal RNA (rRNA). Hypothesis/Gap Statement. The automated molecular diagnostic sytem can identify macrolide-resistant M. pneumoniae . Aim. To assess the performance of an automated molecular diagnostic system, GENECUBE Mycoplasma, in the detection of macrolide resistance-associated mutations. Methodology. To evaluate whether the system can distinguish mutant from wild-type 23S rRNA, synthetic oligonucleotides mimicking known mutations (high-level macrolide resistance, mutation in positions 2063 and 2064; low-level macrolide resistance, mutation in position 2067) were assayed. To evaluate clinical oropharyngeal samples, purified nucleic acids were obtained from M. pneumoniae -positive samples by using the GENECUBE system from nine hospitals. After confirmation by re-evaluation of M. pneumoniae positivity, Sanger-based sequencing of 23S rRNA and mutant typing using GENECUBE Mycoplasma were performed. Results. The system reproducibly identified all synthetic oligonucleotides associated with high-level macrolide resistance. Detection errors were only observed for A2067G (in 2 of the 10 measurements). The point mutation in 23S rRNA was detected in 67 (26.9 %) of 249 confirmed M. pneumoniae -positive clinical samples. The mutations at positions 2063, 2064 and 2617 were observed in 65 (97.0 %), 2 (3.0 %) and 0 (0.0 %) of the 67 samples, respectively. The mutations at positions 2063 and 2064 were A2063G and A2064G, respectively. The results from mutant typing using GENECUBE Mycoplasma were in full agreement with the results from sequence-based typing. Conclusion. GENECUBE Mycoplasma is a reliable test for the identification of clinically significant macrolide-resistant M. pneumoniae .


2020 ◽  
Vol 6 (8) ◽  
Author(s):  
Joseph Crispell ◽  
Sophie Cassidy ◽  
Kevin Kenny ◽  
Guy McGrath ◽  
Susan Warde ◽  
...  

Control of bovine tuberculosis (bTB), caused by Mycobacterium bovis , in the Republic of Ireland costs €84 million each year. Badgers are recognized as being a wildlife source for M. bovis infection of cattle. Deer are thought to act as spillover hosts for infection; however, population density is recognized as an important driver in shifting their epidemiological role, and deer populations across the country have been increasing in density and range. County Wicklow represents one specific area in the Republic of Ireland with a high density of deer that has had consistently high bTB prevalence for over a decade, despite control operations in both cattle and badgers. Our research used whole-genome sequencing of M. bovis sourced from infected cattle, deer and badgers in County Wicklow to evaluate whether the epidemiological role of deer could have shifted from spillover host to source. Our analyses reveal that cattle and deer share highly similar M. bovis strains, suggesting that transmission between these species is occurring in the area. In addition, the high level of diversity observed in the sampled deer population suggests deer may be acting as a source of infection for local cattle populations. These findings have important implications for the control and ultimate eradication of bTB in Ireland.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3877-3884 ◽  
Author(s):  
Celine De Maesschalck ◽  
Filip Van Immerseel ◽  
Venessa Eeckhaut ◽  
Siegrid De Baere ◽  
Margo Cnockaert ◽  
...  

Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428T and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be distinguished from S. pleomorphus ATCC 29734T based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734T. The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428T and LMG 27427. Strain LMG 27428T ( = DSM 26963T) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( = DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756T = ATCC 29734T = DSM 20574T). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983T (94.4 % 16S rRNA gene sequence similarity to strain LMG 27428T) and Eubacterium biforme DSM 3989T (92.7 % 16S rRNA gene sequence similarity to strain LMG 27428T). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983T = ATCC 27803T = JCM 10261T and that of Holdemanella biformis is DSM 3989T = ATCC 27806T = CCUG 28091T.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1149-1154 ◽  
Author(s):  
Varsha Kale ◽  
Snædís H. Björnsdóttir ◽  
Ólafur H. Friðjónsson ◽  
Sólveig K. Pétursdóttir ◽  
Sesselja Ómarsdóttir ◽  
...  

A thermophilic, aerobic, Gram-stain-negative, filamentous bacterium, strain PRI-4131T, was isolated from an intertidal hot spring in Isafjardardjup, NW Iceland. The strain grew chemo-organotrophically on various carbohydrates. The temperature range for growth was 40–65 °C (optimum 55 °C), the pH range was pH 6.5–9.0 (optimum pH 7.0) and the NaCl range was 0–3 % (w/v) (optimum 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PRI-4131T represented a distinct lineage within the class Caldilineae of the phylum Chloroflexi. The highest levels of sequence similarity, about 91 %, were with Caldilinea aerophila STL-6-O1T and Caldilinea tarbellica D1-25-10-4T. Fermentative growth was not observed for strain PRI-4131T, which, in addition to other characteristics, distinguished it from the two Caldilinea species. Owing to both phylogenetic and phenotypic differences from the described members of the class Caldilineae , we propose to accommodate strain PRI-4131T in a novel species in a new genus, Litorilinea aerophila gen. nov., sp. nov. The type strain of Litorilinea aerophila is PRI-4131T ( = DSM 25763T  = ATCC BAA-2444T).


Sign in / Sign up

Export Citation Format

Share Document