scholarly journals The 33 carboxyl-terminal residues of Spa40 orchestrate the multi-step assembly process of the type III secretion needle complex in Shigella flexneri

Microbiology ◽  
2010 ◽  
Vol 156 (9) ◽  
pp. 2807-2817 ◽  
Author(s):  
Anne Botteaux ◽  
Christian A. Kayath ◽  
Anne-Laure Page ◽  
Nouredine Jouihri ◽  
Musa Sani ◽  
...  

The type III secretion apparatus (T3SA) is a central virulence factor of many Gram-negative bacteria. Its overall morphology consists of a cytoplasmic region, inner- and outer-membrane sections and an extracellular needle. In Shigella, the length of the needle is regulated by Spa32. To understand better the role of Spa32 we searched for its interacting partners using a two-hybrid screen in yeast. We found that Spa32 interacts with the 33 C-terminal residues (CC*) of Spa40, a member of the conserved FlhB/YscU family. Using a GST pull-down assay we confirmed this interaction and identified additional interactions between Spa40 and the type III secretion components Spa33, Spa47, MxiK, MxiN and MxiA. Inactivation of spa40 abolished protein secretion and led to needleless structures. Genetic and functional analyses were used to investigate the roles of residues L310 and V320, located within the CC* domain of Spa40, in the assembly of the T3SA. Spa40 cleavage, at the conserved NPTH motif, is required for assembly of the T3SA and for its interaction with Spa32, Spa33 and Spa47. In contrast, unprocessed forms of Spa40 interacted only with MxiA, MxiK and MxiN. Our data suggest that the conformation of the cytoplasmic domain of Spa40 defines the multi-step assembly process of the T3SA.

Open Biology ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 160073 ◽  
Author(s):  
Xia Wang ◽  
Feng Jiang ◽  
Jianhua Zheng ◽  
Lihong Chen ◽  
Jie Dong ◽  
...  

Outer membrane phospholipase A (OMPLA) is an enzyme located in the outer membrane of Gram-negative bacteria. OMPLA exhibits broad substrate specificity, and some of its substrates are located in the cellular envelope. Generally, the enzymatic activity can only be induced by perturbation of the cell envelope integrity through diverse methods. Although OMPLA has been thoroughly studied as a membrane protein in Escherichia coli and is constitutively expressed in many other bacterial pathogens, little is known regarding the functions of OMPLA during the process of bacterial infection. In this study, the proteomic and transcriptomic data indicated that OMPLA in Shigella flexneri , termed PldA, both stabilizes the bacterial membrane and is involved in bacterial infection under ordinary culture conditions. A series of physiological assays substantiated the disorganization of the bacterial outer membrane and the periplasmic space in the ΔpldA mutant strain. Furthermore, the ΔpldA mutant strain showed decreased levels of type III secretion system expression, contributing to the reduced internalization efficiency in host cells. The results of this study support that PldA, which is widespread across Gram-negative bacteria, is an important factor for the bacterial life cycle, particularly in human pathogens.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Julia V. Monjarás Feria ◽  
Matthew D. Lefebre ◽  
York-Dieter Stierhof ◽  
Jorge E. Galán ◽  
Samuel Wagner

ABSTRACTType III secretion systems (T3SSs) are multiprotein machines employed by many Gram-negative bacteria to inject bacterial effector proteins into eukaryotic host cells to promote bacterial survival and colonization. The core unit of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins through the bacterial envelope. A distinct feature of the T3SS is that protein export occurs in a strictly hierarchical manner in which proteins destined to form the needle complex filament and associated structures are secreted first, followed by the secretion of effectors and the proteins that will facilitate their translocation through the target host cell membrane. The secretion hierarchy is established by complex mechanisms that involve several T3SS-associated components, including the “switch protein,” a highly conserved, inner membrane protease that undergoes autocatalytic cleavage. It has been proposed that the autocleavage of the switch protein is the trigger for substrate switching. We show here that autocleavage of theSalmonella entericaserovar Typhimurium switch protein SpaS is an unregulated process that occurs after its folding and before its incorporation into the needle complex. Needle complexes assembled with a precleaved form of SpaS function in a manner indistinguishable from that of the wild-type form. Furthermore, an engineered mutant of SpaS that is processed by an external protease also displays wild-type function. These results demonstrate that the cleavage eventper sedoes not provide a signal for substrate switching but support the hypothesis that cleavage allows the proper conformation of SpaS to render it competent for its switching function.IMPORTANCEBacterial interaction with eukaryotic hosts often involves complex molecular machines for targeted delivery of bacterial effector proteins. One such machine, the type III secretion system of some Gram-negative bacteria, serves to inject a multitude of structurally diverse bacterial proteins into the host cell. Critical to the function of these systems is their ability to secrete proteins in a strict hierarchical order, but it is unclear how the mechanism of switching works. Central to the switching mechanism is a highly conserved inner membrane protease that undergoes autocatalytic cleavage. Although it has been suggested previously that the autocleavage event is the trigger for substrate switching, we show here that this is not the case. Rather, our results show that cleavage allows the proper conformation of the protein to render it competent for its switching function. These findings may help develop inhibitors of type III secretion machines that offer novel therapeutic avenues to treat various infectious diseases.


2020 ◽  
Author(s):  
Hanh N. Lam ◽  
Tannia Lau ◽  
Adam Lentz ◽  
Jessica Sherry ◽  
Alejandro Cabrera-Cortez ◽  
...  

ABSTRACTAntibiotic resistant bacteria are an emerging global health threat. New antimicrobials are urgently needed. The injectisome type III secretion system (T3SS), required by dozens of Gram-negative bacteria for virulence but largely absent from non-pathogenic bacteria, is an attractive antimicrobial target. We previously identified synthetic cyclic peptomers, inspired by the natural product phepropeptin D, that inhibit protein secretion through the Yersinia Ysc and Pseudomonas aeruginosa Psc T3SSs, but do not inhibit bacterial growth. Here we describe identification of an isomer, 4EpDN, that is two-fold more potent (IC50 4 μM) than its parental compound. Furthermore, 4EpDN inhibited the Yersinia Ysa and the Salmonella SPI-1 T3SSs, suggesting that this cyclic peptomer has broad efficacy against evolutionarily distant injectisome T3SSs. Indeed, 4EpDN strongly inhibited intracellular growth of Chlamydia trachomatis in HeLa cells, which requires the T3SS. 4EpDN did not inhibit the unrelated Twin arginine translocation (Tat) system, nor did it impact T3SS gene transcription. Moreover, although the injectisome and flagellar T3SSs are evolutionarily and structurally related, the 4EpDN cyclic peptomer did not inhibit secretion of substrates through the Salmonella flagellar T3SS, indicating that cyclic peptomers broadly but specifically target the injestisome T3SS. 4EpDN reduced the number of T3SS basal bodies detected on the surface of Y. enterocolitica, as visualized using a fluorescent derivative of YscD, an inner membrane ring with low homology to flagellar protein FliG. Collectively, these data suggest that cyclic peptomers specifically inhibit the injectisome T3SS from a variety of Gram-negative bacteria, possibly by preventing complete T3SS assembly.IMPORTANCETraditional antibiotics target both pathogenic and commensal bacteria, resulting in a disruption of the microbiota, which in turn is tied to a number of acute and chronic diseases. The bacterial type III secretion system (T3SS) is an appendage used by many bacterial pathogens to establish infection, but is largely absent from commensal members of the microbiota. In this study, we identify a new derivative of the cyclic peptomer class of T3SS inhibitors. These compounds inhibit the T3SS of the nosocomial ESKAPE pathogen Pseudomonas aeruginosa and enteropathogenic Yersinia and Salmonella. The impact of cyclic peptomers is specific to the T3SS, as other bacterial secretory systems are unaffected. Importantly, cyclic peptomers completely block replication of Chlamydia trachomatis, the causative agent of genital, eye, and lung infections, in human cells, a process that requires the T3SS. Therefore, cyclic peptomers represent promising virulence blockers that can specifically disarm a broad spectrum of Gram-negative pathogens.


Physiology ◽  
2005 ◽  
Vol 20 (5) ◽  
pp. 326-339 ◽  
Author(s):  
Paul Troisfontaines ◽  
Guy R. Cornelis

The type III secretion (T3S) pathway allows bacteria to inject effector proteins into the cytosol of target animal or plant cells. T3S systems evolved into seven families that were distributed among Gram-negative bacteria by horizontal gene transfer. There are probably a few hundred effectors interfering with control and signaling in eukaryotic cells and offering a wealth of new tools to cell biologists.


2004 ◽  
Vol 186 (13) ◽  
pp. 4056-4066 ◽  
Author(s):  
Kimberly A. Walker ◽  
Virginia L. Miller

ABSTRACT Yersinia enterocolitica biovar 1B contains two type III secretion systems (TTSSs), the plasmid-encoded Ysc-Yop system and the chromosomally encoded Ysa-Ysp system. Proteins secreted from the Ysa TTSS (Ysps) have only been detected in vitro when cells are cultured at 26°C in a high-NaCl medium. However, the exact role of the Ysa TTSS is unclear. Thus, investigations into the regulation of this system may help elucidate the role of the Ysps during the life cycle of Y. enterocolitica. Here we present evidence that the AraC-like regulator YsaE acts together with the chaperone SycB to regulate transcription of the sycByspBCDA operon, a phenomenon similar to that seen in the closely related Salmonella SPI-1 and Shigella flexneri Mxi-Spa-Ipa TTSSs. Deletion of either sycB or ysaE results in a twofold reduction in the activity of a sycB-lacZ fusion compared to the wild type. In a reconstituted Escherichia coli system, transcription of sycB was activated sixfold only when both YsaE and SycB were present, demonstrating that they are necessary for activation. ysrR and ysrS are located near the ysa genes and encode a putative two-component regulatory system. Mutations in either gene indicated that both YsrR and YsrS were required for secretion of Ysps. In addition, transcription from sycB-lacZ and ysaE-lacZ fusions was decreased 6.5- and 25-fold, respectively, in the ysrS mutant compared to the wild type. Furthermore, in the absence of NaCl, the activity of ysaE-lacZ was reduced 25-fold in the wild-type and ΔysrS strains, indicating that YsrS is probably required for the salt-dependent expression of the ysa locus. These results suggest that the putative two-component system YsrRS may be a key element in the regulatory cascade for the Ysa TTSS.


2020 ◽  
Author(s):  
Sohini Deb ◽  
Palash Ghosh ◽  
Hitendra K. Patel ◽  
Ramesh V. Sonti

SummaryXanthomonas oryzae pv. oryzae uses several type III secretion system (T3SS) effectors, namely XopN, XopQ, XopX, and XopZ, to suppress rice immune responses that are induced following treatment with cell wall degrading enzymes. Here we show that the T3SS secreted effector XopX interacts with two of the eight rice 14-3-3 proteins. Mutants of XopX that are defective in 14-3-3 binding are also defective in suppression of immune responses, suggesting that interaction with 14-3-3 proteins is required for suppression of host innate immunity. However, Agrobacterium mediated delivery of both XopX and XopQ into rice cells results in induction of rice immune responses. These immune responses are not observed when either protein is individually delivered into rice cells. XopQ-XopX induced rice immune responses are not observed in a XopX mutant that is defective in 14-3-3 binding. Yeast two-hybrid and BiFC assays indicate that XopQ and XopX interact with each other. In a screen for Xanthomonas effectors which can suppress XopQ-XopX induced rice immune responses, five effectors were identified, namely XopU, XopV, XopP, XopG and AvrBs2, which were able to do so. These results suggest a complex interplay of Xanthomonas T3SS effectors in suppression of pathogen triggered immunity and effector triggered immunity to promote virulence on rice.Significance statementThis work studies the role of the type III effector XopX in the suppression and induction of rice immune responses, by differential interaction with the 14-3-3 proteins, or with the type III effector XopQ respectively. We have also identified a subset of type III effectors which can suppress this form of immune responses.


Microbiology ◽  
2014 ◽  
Vol 160 (1) ◽  
pp. 130-141 ◽  
Author(s):  
Youness Cherradi ◽  
Abderrahman Hachani ◽  
Abdelmounaaïm Allaoui

The type III secretion apparatus (T3SA) is used by numerous Gram-negative pathogens to inject virulence factors into eukaryotic cells. The Shigella flexneri T3SA spans the bacterial envelope and its assembly requires the products of ~20 mxi and spa genes. Despite progress made in understanding how the T3SA is assembled, the role of several predicted soluble components, such as Spa13, remains elusive. Here, we show that the secretion defect of the spa13 mutant is associated with lack of T3SA assembly which is partly due to the instability of the needle component MxiH. In contrast to its Yersinia counterpart, Spa13 is not a secreted protein. We identified a network of interactions between Spa13 and the ATPase Spa47, the C-ring protein Spa33, and the inner-membrane protein Spa40. Moreover, we revealed a Spa13 interaction with the inner-membrane MxiA and showed that overexpression of the large cytoplasmic domain of MxiA in the WT background shuts off secretion. Lastly, we demonstrated that Spa13 interacts with the cleaved form of Spa40 and with the translocator chaperone IpgC, suggesting that Spa13 intervenes during the secretion hierarchy switch process. Collectively, our results support a dual role of Spa13 as a chaperone escort and as an export gate-activator switch.


Sign in / Sign up

Export Citation Format

Share Document