scholarly journals Phenotypic diversification in vivo: Pseudomonas aeruginosa gacS− strains generate small colony variants in vivo that are distinct from in vitro variants

Microbiology ◽  
2010 ◽  
Vol 156 (12) ◽  
pp. 3699-3709 ◽  
Author(s):  
Lisa K. Nelson ◽  
M. Mark Stanton ◽  
Robyn E. A. Elphinstone ◽  
Janessa Helwerda ◽  
Raymond J. Turner ◽  
...  

Pseudomonas aeruginosa has long been known to produce phenotypic variants during chronic mucosal surface infections. These variants are thought to be generated to ensure bacterial survival against the diverse challenges in the mucosal environment. Studies have begun to elucidate the mechanisms by which these variants emerge in vitro; however, too little information exists on phenotypic variation in vivo to draw any links between variants generated in vitro and in vivo. Consequently, in this study, the P. aeruginosa gacS gene, which has previously been linked to the generation of small colony variants (SCVs) in vitro, was studied in an in vivo mucosal surface infection model. More specifically, the rat prostate served as a model mucosal surface to test for the appearance of SCVs in vivo following infections with P. aeruginosa gacS− strains. As in in vitro studies, deletion of the gacS gene led to SCV production in vivo. The appearance of these in vivo SCVs was important for the sustainability of a chronic infection. In the subset of rats in which P. aeruginosa gacS− did not convert to SCVs, clearance of the bacteria took place and healing of the tissue ensued. When comparing the SCVs that arose at the mucosal surface (MS-SCVs) with in vitro SCVs (IV-SCVs) from the same gacS− parent, some differences between the phenotypic variants were observed. Whereas both MS-SCVs and IV-SCVs formed dense biofilms, MS-SCVs exhibited a less diverse resistance profile to antimicrobial agents than IV-SCVs. Additionally, MS-SCVs were better suited to initiate an infection in the rat model than IV-SCVs. Together, these observations suggest that phenotypic variation in vivo can be important for maintenance of infection, and that in vivo variants may differ from in vitro variants generated from the same genetic parent.

2020 ◽  
Author(s):  
Anne Six ◽  
Khedidja Mosbahi ◽  
Madhuri Barge ◽  
Colin Kleanthous ◽  
Thomas Evans ◽  
...  

SynopsisBackgroundBloodstream infections with antibiotic resistant Pseudomonas aeruginosa are common and increasingly difficult to treat. Pyocins are naturally occurring protein antibiotics produced by P. aeruginosa that have potential for human use.ObjectivesTo determine if pyocin treatment is effective in a murine model of sepsis with P. aeruginosa.MethodsRecombinant pyocins S5 and AP41 were purified tested for efficacy in a Galleria mellonella infection model and a murine model of P. aeruginosa sepsis.ResultsBoth pyocins produced no adverse effects when injected alone into mice and showed good in vitro antipseudomonal activity. In an invertebrate model of sepsis using Galleria mellonella, both pyocins significantly prolonged survival. Following injection into mice, both showed extensive distribution into different organs. When administered 5 hours after infection, both pyocins reduced mortality, with pyocin S5 being more effective than AP41.ConclusionsPyocins S5 and AP41 show in vivo biological activity and can improve survival in a murine model of P. aeruginosa infection. They hold promise as novel antimicrobial agents for treatment of multi-drug resistant infections with this microbe.


2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


2010 ◽  
Vol 54 (6) ◽  
pp. 2338-2344 ◽  
Author(s):  
Michael P. Horn ◽  
Adrian W. Zuercher ◽  
Martin A. Imboden ◽  
Michael P. Rudolf ◽  
Hedvika Lazar ◽  
...  

ABSTRACT Pseudomonas aeruginosa infection in ventilator-associated pneumonia is a serious and often life-threatening complication in intensive care unit patients, and new treatment options are needed. We used B-cell-enriched peripheral blood lymphocytes from a volunteer immunized with a P. aeruginosa O-polysaccharide-toxin A conjugate vaccine to generate human hybridoma cell lines producing monoclonal antibodies specific for individual P. aeruginosa lipopolysaccharide serotypes. The fully human monoclonal antibody secreted by one of these lines, KBPA101, is an IgM/κ antibody that binds P. aeruginosa of International Antigenic Typing System (IATS) serotype O11 with high avidity (5.81 × 107 M−1 ± 2.8 × 107 M−1) without cross-reacting with other serotypes. KBPA101 specifically opsonized the P. aeruginosa of IATS O11 serotype and mediated complement-dependent phagocytosis in vitro by the human monocyte-like cell line HL-60 at a very low concentration (half-maximal phagocytosis at 0.16 ng/ml). In vivo evaluation of KBPA101 demonstrated a dose-response relationship for protection against systemic infections in a murine burn wound sepsis model, where 70 to 100% of animals were protected against lethal challenges with P. aeruginosa at doses as low as 5 μg/animal. Furthermore, a high efficacy of KBPA101 in protection from local respiratory infections in an acute lung infection model in mice was demonstrated. Preclinical toxicology evaluation on human tissue, in rabbits, and in mice did not indicate any toxicity of KBPA101. Based on these preclinical findings, the first human clinical trials have been initiated.


2006 ◽  
Vol 8 (2) ◽  
pp. 363-371 ◽  
Author(s):  
J. Jacob ◽  
G.M. Hort ◽  
P. Overhoff ◽  
M.E.A. Mielke

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S640-S641
Author(s):  
Christian M Gill ◽  
Kamilia Abdelraouf ◽  
David P Nicolau

Abstract Background Carbapenems are often used for infections due to extended-spectrum-β-lactamase (ESBL) and cephalosporinase (CSase)-producers. As increased carbapenem utilization is associated with the development of carbapenem resistance, antimicrobial stewardship has targeted non-carbapenem options. WCK 4282 (FEP 2 g-TZB 2 g) offers pharmacodynamically optimized TZB exposure and demonstrated potent activity in vitro against ESBL-phenotype isolates. We describe the pharmacodynamics of a WCK 4282 human-simulated regimen (HSR) in the neutropenic murine thigh model. Methods 19 clinical strains harboring ESBLs or CSase (EB; n=8 and PA; n=4) or serine-carbapenemases (EB; KPC n=4 or OXA-48-like n=3) were tested in vivo. Per CLSI, 19, 18, and 17 isolates were cefepime, ceftolozane/tazobactam, and piperacillin/tazobactam (TZP) non-susceptible, respectively. Thighs of neutropenic, female, CD-1 mice (3 per group) were inoculated with ~107 CFU/mL of bacterial suspension 2 h prior to dosing. Mice received WCK 4282 HSR, FEP HSR, or saline (controls) for 24 h. WCK 4282 HSR and FEP HSR provided plasma exposures in mice that were similar in f%T > MIC and fAUC to FEP-TZB 2 g-2 g and FEP 2 g, respectively, as IV infusions over 1.5 h q8h in humans. Bacterial densities and their changes at 24 h relative to 0 h controls were determined to assess efficacy and reported as mean±SD log10 CFU/thigh. Results Bacterial burdens were 5.81±0.36 at 0 h and 9.29±0.88 at 24 h in untreated controls. WCK 4282 produced potent activity against ESBL/CSase producing EB and PA with WCK 4282 MIC ≤ 16 mg/L; mean change in log10 CFU from 0 h was -1.70±0.77, while growth was observed with FEP alone. WCK 4282 produced variable activity against OXA-48-like harboring EB. Against KPC-harboring EB, WCK 4282 produced stasis to growth. Mean Log10 CFU changes are reported in Table 1 and Figure 1. Table 1. Comparative efficacy of FEP HSR and WCK 4282 HSR by genotypic β-lactamase Figure 1. Mean Change in log10CFU/thigh for 24 h controls, FEP HSR, and WCK 4282 HSR across the tested MIC distribution. Conclusion WCK 4282, a novel TZB containing regimen, resulted in enhance in vitro potency against ESBL/CSase and OXA-48-like producers. Humanized exposures of WCK 4282 produced substantial kill in vivo against ESBL/CSase producers with MICs ≤ 16 mg/L including FEP resistant/TZP non-susceptible PA. These data support further evaluations of WCK 4282 as a carbapenem-sparing regimen for ESBL/cephalosporinase harboring strains. Disclosures David P. Nicolau, PharmD, Cepheid (Other Financial or Material Support, Consultant, speaker bureau member or has received research support.)Merck & Co., Inc. (Consultant, Grant/Research Support, Speaker’s Bureau)Wockhardt (Grant/Research Support)


Author(s):  
Sergio Reyes ◽  
Kamilia Abdelraouf ◽  
David P Nicolau

Abstract Background Imipenem/relebactam is a carbapenem/β-lactamase inhibitor combination with in vitro activity against Pseudomonas aeruginosa and Enterobacterales, including KPC producers. Objectives To provide translational data to support the clinical utility of the imipenem/relebactam 500/250 mg q6h regimen using a human-simulated regimen (HSR) of imipenem/relebactam, compared with imipenem alone, against a phenotypically and genotypically diverse population of P. aeruginosa. Methods Twenty-nine P. aeruginosa isolates, including KPC (n = 6), PDC (n = 9), PAO (n = 4), GES (n = 5) and VIM (n = 1) producers, were used for the in vivo efficacy studies. Neutropenic mice were thigh-inoculated and randomized to receive HSRs of either imipenem 500 mg q6h, imipenem 1 g q8h, imipenem/relebactam 500/250 mg q6h or saline. Results Twenty-seven of the 29 isolates examined were imipenem resistant, with 24/29 isolates showing imipenem MICs of ≥32 mg/L. The addition of relebactam decreased the MICs up to 64-fold; imipenem/relebactam MICs ranged from 0.25 to >32 mg/L. Efficacies of the imipenem monotherapies and the imipenem/relebactam therapy were comparable for the two imipenem-susceptible organisms. Among the imipenem-resistant isolates, an increased mean growth was observed in the imipenem 500 mg q6h HSR and 1 g q8h HSR treatment groups of 1.31 ± 1.01 and 0.18 ± 1.67 log10 cfu/thigh, respectively. In contrast, a ≥2 log reduction in bacterial density was observed in 27/29 (93%) of the imipenem-resistant isolates subjected to imipenem/relebactam 500/250 mg q6h HSR. Conclusions The imipenem/relebactam 500/250 mg q6h HSR demonstrated superior in vivo activity compared with the conventionally employed imipenem regimens against MDR P. aeruginosa over a wide range of imipenem/relebactam MICs.


2020 ◽  
Vol 295 (29) ◽  
pp. 10081-10091
Author(s):  
Hyung Jun Kim ◽  
Hyunjung Lee ◽  
Yunmi Lee ◽  
Inhee Choi ◽  
Yoonae Ko ◽  
...  

Thiamine pyrophosphate (TPP) is an essential cofactor for various pivotal cellular processes in all living organisms, including bacteria. Thiamine biosynthesis occurs in bacteria but not in humans; therefore, the enzymes in this pathway are attractive targets for antibiotic development. Among these enzymes, thiamine monophosphate kinase (ThiL) catalyzes the final step of this pathway, phosphorylating thiamine monophosphate to produce TPP. Here, we extensively investigated ThiL in Pseudomonas aeruginosa, a major pathogen responsible for hospital-acquired infections. We demonstrate that thiL deletion abolishes not only thiamine biosynthesis but also thiamine salvage capability and results in growth defects of the ΔthiL strain even in the presence of thiamine derivatives, except for TPP. Most importantly, the pathogenesis of the ΔthiL strain was markedly attenuated, compared with that of WT cells, with lower inflammatory cytokine induction and 103–104-fold decreased bacterial loads in an in vivo infection model in which the intracellular TPP level was in the submicromolar range. To validate P. aeruginosa ThiL (PaThiL) as a drug target, we further characterized its biochemical properties, determining a Vmax of 4.0 ± 0.2 nmol·min−1 and Km values of 111 ± 8 and 8.0 ± 3.5 μm for ATP and thiamine monophosphate, respectively. An in vitro small-molecule screening assay identified PaThiL inhibitors including WAY213613, a noncompetitive inhibitor with a Ki value of 13.4 ± 2.3 μm and potential antibacterial activity against P. aeruginosa. These comprehensive biological and biochemical results indicate that PaThiL represents a potential drug target for the development of an augmented repertoire of antibiotics against P. aeruginosa.


2021 ◽  
Author(s):  
Izabela Z. Batko ◽  
Ronald S. Flannagan ◽  
Veronica Guariglia-Oropeza ◽  
Jessica R. Sheldon ◽  
David E. Heinrichs

Respiration deficient S. aureus small colony variants (SCVs) frequently cause persistent infections, which necessitates they acquire iron, yet how SCVs obtain iron remains unknown. To address this, we created a stable hemB mutant in S. aureus USA300 strain LAC. The hemB SCV utilized exogenously supplied hemin but was attenuated for growth under conditions of iron starvation. RNA-seq showed that both WT S. aureus and the hemB mutant sense and respond to iron starvation, however, growth assays show that the hemB mutant is defective for siderophore-mediated iron acquisition. Indeed, the hemB SCV demonstrated limited utilization of endogenous staphyloferrin B or exogenously provided staphyloferrin A, Desferal, and epinephrine. Direct measurement of intracellular ATP in hemB and WT S. aureus revealed that both strains can generate comparable levels of ATP during exponential growth suggesting defects in ATP production cannot account for the inability to efficiently utilize siderophores. Defective siderophore utilization by hemB bacteria was also evident in vivo , as administration of Desferal failed to promote hemB bacterial growth in every organ analyzed except for the kidneys. In support of the hypothesis that S. aureus accesses heme in kidney abscesses, in vitro analyses revealed that increased hemin availability enables hemB bacteria to utilize siderophores for growth when iron availability is restricted. Taken together, our data support the conclusion that hemin is not only used as an iron source itself, but as a nutrient that promotes utilization of siderophore-iron complexes. Importance S. aureus small colony variants (SCVs) are associated with chronic recurrent infection and worsened clinical outcome. SCVs persist within the host despite administration of antibiotics. This study yields insight into how S. aureus SCVs acquire iron which, during infection of a host, is a difficult-to-acquire metal nutrient. Under hemin-limited conditions, hemB S. aureus is impaired for siderophore-dependent growth and, in agreement, murine infection indicates that hemin-deficient SCVs meet their nutritional requirement for iron through utilization of hemin. Importantly, we demonstrate that hemB SCVs rely upon hemin as a nutrient to promote siderophore utilization. Therefore, perturbation of heme biosynthesis and/or utilization represents a viable to strategy to mitigate the ability of SCV bacteria to acquire siderophore-bound iron during infection.


2003 ◽  
Vol 47 (12) ◽  
pp. 3743-3749 ◽  
Author(s):  
Mirjana Macvanin ◽  
Johanna Björkman ◽  
Sofia Eriksson ◽  
Mikael Rhen ◽  
Dan I. Andersson ◽  
...  

ABSTRACT Mutants of Salmonella enterica serovar Typhimurium resistant to fusidic acid (Fusr) have mutations in fusA, the gene encoding translation elongation factor G (EF-G). Most Fusr mutants have reduced fitness in vitro and in vivo, in part explained by mutant EF-G slowing the rate of protein synthesis and growth. However, some Fusr mutants with normal rates of protein synthesis still suffer from reduced fitness in vivo. As shown here, Fusr mutants could be similarly ranked in their relative fitness in mouse infection models, in a macrophage infection model, in their relative hypersensitivity to hydrogen peroxide in vivo and in vitro, and in the amount of RpoS production induced upon entry into the stationary phase. We identify a reduced ability to induce production of RpoS (σs) as a defect associated with Fusr strains. Because RpoS is a regulator of the general stress response, and an important virulence factor in Salmonella, an inability to produce RpoS in appropriate amounts can explain the low fitness of Fusr strains in vivo. The unfit Fusr mutants also produce reduced levels of the regulatory molecule ppGpp in response to starvation. Because ppGpp is a positive regulator of RpoS production, we suggest that a possible cause of the reduced levels of RpoS is the reduction in ppGpp production associated with mutant EF-G. The low fitness of Fusr mutants in vivo suggests that drugs that can alter the levels of global regulators of gene expression deserve attention as potential antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document