Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli

Microbiology ◽  
2003 ◽  
Vol 149 (10) ◽  
pp. 2819-2828 ◽  
Author(s):  
Yoko Eguchi ◽  
Taku Oshima ◽  
Hirotada Mori ◽  
Rikizo Aono ◽  
Kaneyoshi Yamamoto ◽  
...  

A constitutively active mutant of histidine kinase sensor EvgS was found to confer multi-drug resistance (MDR) to an acrA-deficient Escherichia coli, indicating the relationship between the two-component system EvgAS and the expression of the MDR system. The observed MDR also depended on an outer-membrane channel, TolC. Microarray and S1 mapping assays indicated that, in the presence of this constitutive mutant EvgS, the level of transcription increased for some MDR genes, including the drug efflux genes emrKY, yhiUV, acrAB, mdfA and tolC. Transcription in vitro of emrK increased by the addition of phosphorylated EvgA. Transcription activation of tolC by the activated EvgS was, however, dependent on both EvgAS and PhoPQ (Mg2+-responsive two-component system), in agreement with the presence of the binding site (PhoP box) for the regulator PhoP in the tolC promoter region. Transcription in vitro of yhiUV also appears to require an as-yet-unidentified additional transcriptional factor besides EvgA. Taken together we propose that the expression of the MDR system is under a complex regulatory network, including the phosphorylated EvgA serving as the master regulator.

2004 ◽  
Vol 186 (24) ◽  
pp. 8317-8325 ◽  
Author(s):  
Hiroshi Ogasawara ◽  
Jun Teramoto ◽  
Kiyo Hirao ◽  
Kaneyoshi Yamamoto ◽  
Akira Ishihama ◽  
...  

ABSTRACT In Escherichia coli K-12 overexpressing CpxR, transcription of the ung gene for uracil-DNA glycosylase was repressed, ultimately leading to the induction of mutation. Gel shift, DNase I footprinting, and in vitro transcription assays all indicated negative regulation of ung transcription by phosphorylated CpxR. Based on the accumulated results, we conclude that ung gene expression is negatively regulated by the two-component system of CpxR/CpxA signal transduction.


2006 ◽  
Vol 74 (8) ◽  
pp. 4900-4909 ◽  
Author(s):  
Christopher D. Herren ◽  
Arindam Mitra ◽  
Senthil Kumar Palaniyandi ◽  
Adam Coleman ◽  
Subbiah Elankumaran ◽  
...  

ABSTRACT The BarA-UvrY two-component system (TCS) in Escherichia coli is known to regulate a number of phenotypic traits. Both in vitro and in vivo assays, including the chicken embryo lethality assay, showed that this TCS regulates virulence in avian pathogenic E. coli (APEC) serotype O78:K80:H9. A number of virulence determinants, such as the abilities to adhere, invade, persist within tissues, survive within macrophages, and resist bactericidal effects of serum complement, were compromised in mutants lacking either the barA or uvrY gene. The reduced virulence was attributed to down regulation of type 1 and Pap fimbriae, reduced exopolysaccharide production, and increased susceptibility to oxidative stress. Our results indicate that BarA-UvrY regulates virulence properties in APEC and that the chicken embryo lethality assay can be used as a surrogate model to determine virulence determinants and their regulation in APEC strains.


Microbiology ◽  
2003 ◽  
Vol 149 (9) ◽  
pp. 2331-2343 ◽  
Author(s):  
Thierry Doan ◽  
Pascale Servant ◽  
Shigeo Tojo ◽  
Hirotake Yamaguchi ◽  
Guillaume Lerondel ◽  
...  

A transcriptome comparison of a wild-type Bacillus subtilis strain growing under glycolytic or gluconeogenic conditions was performed. In particular, it revealed that the ywkA gene, one of the four paralogues putatively encoding a malic enzyme, was more transcribed during gluconeogenesis. Using a lacZ reporter fusion to the ywkA promoter, it was shown that ywkA was specifically induced by external malate and not subject to glucose catabolite repression. Northern analysis confirmed this expression pattern and demonstrated that ywkA is cotranscribed with the downstream ywkB gene. The ywkA gene product was purified and biochemical studies demonstrated its malic enzyme activity, which was 10-fold higher with NAD than with NADP (k cat/K m 102 and 10 s−1 mM−1, respectively). However, physiological tests with single and multiple mutant strains affected in ywkA and/or in ywkA paralogues showed that ywkA does not contribute to efficient utilization of malate for growth. Transposon mutagenesis allowed the identification of the uncharacterized YufL/YufM two-component system as being responsible for the control of ywkA expression. Genetic analysis and in vitro studies with purified YufM protein showed that YufM binds just upstream of ywkA promoter and activates ywkA transcription in response to the presence of malate in the extracellular medium, transmitted by YufL. ywkA and yufL/yufM could thus be renamed maeA for malic enzyme and malK/malR for malate kinase sensor/malate response regulator, respectively.


2021 ◽  
Author(s):  
Sara El Hajj ◽  
Camille Henry ◽  
Camille Andrieu ◽  
Alexandra Vergnes ◽  
Laurent Loiseau ◽  
...  

Two-component systems (TCS) are signalling pathways that allow bacterial cells to sense, respond and adapt to fluctuating environments. Among the classical TCS of Escherichia coli , HprSR has recently been shown to be involved in the regulation of msrPQ , which encodes the periplasmic methionine sulfoxide reductase system. In this study, we demonstrate that hypochlorous acid (HOCl) induces the expression of msrPQ in an HprSR-dependant manner, whereas H 2 O 2 , NO and paraquat (a superoxide generator) do not. Therefore, HprS appears to be an HOCl-sensing histidine kinase. Using a directed mutagenesis approach, we show that Met residues located in the periplasmic loop of HprS are important for its activity: as HOCl preferentially oxidizes Met residues, we provide evidence that HprS could be activated via the reversible oxidation of its methionine residues, meaning that MsrPQ plays a role in switching HprSR off. We propose that the activation of HprS by HOCl could occur through a Met redox switch. HprSR appears to be the first characterized TCS able to detect reactive chlorine species (RCS) in E. coli . This study represents an important step towards understanding the mechanisms of RCS resistance in prokaryotes. IMPORTANCE Understanding how bacteria respond to oxidative stress at the molecular level is crucial in the fight against pathogens. HOCl is one of the most potent industrial and physiological microbiocidal oxidants. Therefore bacteria have developed counterstrategies to survive HOCl-induced stress. Over the last decade, important insights into these bacterial protection factors have been obtained. Our work establishes HprSR as a reactive chlorine species-sensing, two-component system in Escherichia coli MG1655, which regulates the expression of MsrPQ, a repair system for HOCl-oxidized proteins. Moreover we provide evidence suggesting that HOCl could activate HprS through a methionine redox switch.


Amino Acids ◽  
2011 ◽  
Vol 43 (2) ◽  
pp. 833-844 ◽  
Author(s):  
Marina C. Theodorou ◽  
Evaggelos C. Theodorou ◽  
Dimitrios A. Kyriakidis

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115534 ◽  
Author(s):  
Patrick D. Scheu ◽  
Philipp A. Steinmetz ◽  
Felix Dempwolff ◽  
Peter L. Graumann ◽  
Gottfried Unden

Microbiology ◽  
2005 ◽  
Vol 151 (11) ◽  
pp. 3603-3614 ◽  
Author(s):  
Darío Ortiz de Orué Lucana ◽  
Peijian Zou ◽  
Marc Nierhaus ◽  
Hildgund Schrempf

The Gram-positive soil bacterium and cellulose degrader Streptomyces reticuli synthesizes the mycelium-associated enzyme CpeB, which displays haem-dependent catalase and peroxidase activity, as well as haem-independent manganese-peroxidase activity. The expression of the furS–cpeB operon depends on the redox regulator FurS and the presence of the haem-binding protein HbpS. Upstream of hbpS, the neighbouring senS and senR genes were identified. SenS is a sensor histidine kinase with five predicted N-terminally located transmembrane domains. SenR is the corresponding response regulator with a C-terminal DNA-binding motif. Comparative transcriptional and biochemical studies with a designed S. reticuli senS/senR chromosomal disruption mutant and a set of constructed Streptomyces lividans transformants showed that the presence of the novel two-component system SenS/SenR negatively modulates the expression of the furS–cpeB operon and the hbpS gene. The presence of SenS/SenR enhances considerably the resistance of S. reticuli to haemin and the redox-cycling compound plumbagin, suggesting that this system could participate directly or indirectly in the sensing of redox changes. Epitope-tagged HbpS (obtained from an Escherichia coli transformant) as well as the native S. reticuli HbpS interact in vitro specifically with the purified SenS fusion protein. On the basis of these findings, together with data deduced from the S. reticuli hbpS mutant strain, HbpS is suggested to act as an accessory protein that communicates with the sensor protein to modulate the corresponding regulatory cascade. Interestingly, close and distant homologues, respectively, of the SenS/SenR system are encoded within the Streptomyces coelicolor A3(2) and Streptomyces avermitilis genomes, but not within other known bacterial genomes. Hence the SenS/SenR system appears to be confined to streptomycetes.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Sarah B. Namugenyi ◽  
Alisha M. Aagesen ◽  
Sarah R. Elliott ◽  
Anna D. Tischler

ABSTRACT The Mycobacterium tuberculosis phosphate-specific transport (Pst) system controls gene expression in response to phosphate availability by inhibiting the activation of the SenX3-RegX3 two-component system under phosphate-rich conditions, but the mechanism of communication between these systems is unknown. In Escherichia coli, inhibition of the two-component system PhoR-PhoB under phosphate-rich conditions requires both the Pst system and PhoU, a putative adaptor protein. E. coli PhoU is also involved in the formation of persisters, a subpopulation of phenotypically antibiotic-tolerant bacteria. M. tuberculosis encodes two PhoU orthologs, PhoY1 and PhoY2. We generated phoY single- and double-deletion mutants and examined the expression of RegX3-regulated genes by quantitative reverse transcription-PCR (qRT-PCR). Gene expression was increased only in the ΔphoY1 ΔphoY2 double mutant and could be restored to the wild-type level by complementation with either phoY1 or phoY2 or by deletion of regX3. These data suggest that the PhoY proteins function redundantly to inhibit SenX3-RegX3 activation. We analyzed the frequencies of antibiotic-tolerant persister variants in the phoY mutants using several antibiotic combinations. Persister frequency was decreased at least 40-fold in the ΔphoY1 ΔphoY2 mutant compared to the frequency in the wild type, and this phenotype was RegX3 dependent. A ΔpstA1 mutant lacking a Pst system transmembrane component exhibited a similar RegX3-dependent decrease in persister frequency. In aerosol-infected mice, the ΔphoY1 ΔphoY2 and ΔpstA1 mutants were more susceptible to treatment with rifampin but not isoniazid. Our data demonstrate that disrupting phosphate sensing mediated by the PhoY proteins and the Pst system enhances the susceptibility of M. tuberculosis to antibiotics both in vitro and during infection. IMPORTANCE Persister variants, subpopulations of bacteria that are phenotypically antibiotic tolerant, contribute to the lengthy treatment times required to cure Mycobacterium tuberculosis infection, but the molecular mechanisms governing their formation and maintenance are poorly characterized. Here, we demonstrate that a phosphate-sensing signal transduction system, comprising the Pst phosphate transporter, the two-component system SenX3-RegX3, and functionally redundant PhoY proteins that mediate signaling between Pst and SenX3-RegX3, influences persister formation. Activation of RegX3 by deletion of the phoY genes or a Pst system component resulted in decreased persister formation in vitro. Activated RegX3 also limited persister formation during growth under phosphate-limiting conditions. Importantly, increased susceptibility to the front-line drug rifampin was also observed in a mouse infection model. Thus, the M. tuberculosis phosphate-sensing signal transduction system contributes to antibiotic tolerance and is a potential target for the development of novel therapeutics that may shorten the duration of tuberculosis treatment. IMPORTANCE Persister variants, subpopulations of bacteria that are phenotypically antibiotic tolerant, contribute to the lengthy treatment times required to cure Mycobacterium tuberculosis infection, but the molecular mechanisms governing their formation and maintenance are poorly characterized. Here, we demonstrate that a phosphate-sensing signal transduction system, comprising the Pst phosphate transporter, the two-component system SenX3-RegX3, and functionally redundant PhoY proteins that mediate signaling between Pst and SenX3-RegX3, influences persister formation. Activation of RegX3 by deletion of the phoY genes or a Pst system component resulted in decreased persister formation in vitro. Activated RegX3 also limited persister formation during growth under phosphate-limiting conditions. Importantly, increased susceptibility to the front-line drug rifampin was also observed in a mouse infection model. Thus, the M. tuberculosis phosphate-sensing signal transduction system contributes to antibiotic tolerance and is a potential target for the development of novel therapeutics that may shorten the duration of tuberculosis treatment.


2009 ◽  
Vol 5 (6) ◽  
pp. e1000401 ◽  
Author(s):  
Anu Chakicherla ◽  
Carol L. Ecale Zhou ◽  
Martha Ligon Dang ◽  
Virginia Rodriguez ◽  
J. Norman Hansen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document