Identification of the Mycobacterium tuberculosis GlnE promoter and its response to nitrogen availability

Microbiology ◽  
2006 ◽  
Vol 152 (9) ◽  
pp. 2727-2734 ◽  
Author(s):  
Carey A. Pashley ◽  
Amanda C. Brown ◽  
Dina Robertson ◽  
Tanya Parish

Adenylyltransferase, GlnE, has a predicted role in controlling the enzymic activity of glutamine synthetase, the key enzyme in ammonia assimilation. It was previously demonstrated that glnE is an essential gene in Mycobacterium tuberculosis. glnE is located downstream of glnA2, one of four glutamine synthetases. The expression of GlnE under various conditions was determined. Although a co-transcript of glnA2 and glnE was detectable, the major transcript was monocistronic. A transcriptional start site immediately upstream of glnE was identified and it was shown by site-directed mutagenesis that the predicted −10 region is a functional promoter. It was demonstrated that in a Mycobacterium smegmatis background M. tuberculosis PglnE was up-regulated in ammonia- or glutamine-containing media.

2013 ◽  
Vol 394 (8) ◽  
pp. 977-993 ◽  
Author(s):  
Torsten Schöneberg ◽  
Marco Kloos ◽  
Antje Brüser ◽  
Jürgen Kirchberger ◽  
Norbert Sträter

Abstract Although the crystal structures of prokaryotic 6-phosphofructokinase, a key enzyme of glycolysis, have been available for almost 25 years now, structural information about the more complex and highly regulated eukaryotic enzymes is still lacking until now. This review provides an overview of the current knowledge of eukaryotic 6-phosphofructokinase based on recent crystal structures, kinetic analyses and site-directed mutagenesis data with special focus on the molecular architecture and the structural basis of allosteric regulation.


2005 ◽  
pp. 3495 ◽  
Author(s):  
Nigel A. J. Eady ◽  
Jesmin ◽  
Spiros Servos ◽  
Anthony E. G. Cass ◽  
Judit M. Nagy ◽  
...  

2007 ◽  
Vol 189 (10) ◽  
pp. 3721-3728 ◽  
Author(s):  
Tanya Parish ◽  
Gretta Roberts ◽  
Francoise Laval ◽  
Merrill Schaeffer ◽  
Mamadou Daffé ◽  
...  

ABSTRACT Mycolic acids are a key component of the mycobacterial cell wall, providing structure and forming a major permeability barrier. In Mycobacterium tuberculosis mycolic acids are synthesized by type I and type II fatty acid synthases. One of the enzymes of the type II system is encoded by fabG1. We demonstrate here that this gene can be deleted from the M. tuberculosis chromosome only when another functional copy is provided elsewhere, showing that under normal culture conditions fabG1 is essential. FabG1 activity can be replaced by the corresponding enzyme from the closely related species Mycobacterium smegmatis but not by the enzyme from Escherichia coli. M. tuberculosis carrying FabG from M. smegmatis showed no phenotypic changes, and both the mycolic acids and cell wall permeability were unchanged. Thus, M. tuberculosis and M. smegmatis enzymes are interchangeable and do not control the lengths and types of mycolic acids synthesized.


1999 ◽  
Vol 343 (3) ◽  
pp. 551-555 ◽  
Author(s):  
Karen J. CHAVE ◽  
John GALIVAN ◽  
Thomas J. RYAN

γ-Glutamyl hydrolase (GH), which hydrolyses the γ-glutamyl conjugates of folic acid, is a key enzyme in the maintenance of cellular folylpolyglutamate concentrations. The catalytic mechanism of GH is not known. Consistent with earlier reports that GH is sulphydryl-sensitive, we found that recombinant human GH is inhibited by iodoacetic acid, suggesting that at least one cysteine is important for activity [Rhee, Lindau-Shepard, Chave, Galivan and Ryan (1998) Mol. Pharmacol. 53, 1040-1046]. Using site-directed mutagenesis, the cDNA for human GH was altered to encode four different proteins each with one of four cysteine residues changed to alanine. Three of the mutant proteins had activities similar to wild-type GH and were inhibited by iodoacetic acid, whereas the C110A mutant had no activity. Cys-110 is conserved among the human, rat and mouse GH amino acid sequences. The wild-type protein and all four mutants had similar intrinsic fluorescence spectra, indicating no major structural changes had been introduced. These results indicate that Cys-110 is essential for enzyme activity and suggest that GH is a cysteine peptidase. These studies represent the first identification of the essential Cys residue in this enzyme and provide the beginning of a framework to determine the catalytic mechanism, important in defining GH as a therapeutic target.


2002 ◽  
Vol 367 (1) ◽  
pp. 255-261 ◽  
Author(s):  
Radha CHAUHAN ◽  
Shekhar C. MANDE

Mycobacterium tuberculosis alkylhydroperoxidase C (AhpC) belongs to the peroxiredoxin family, but unusually contains three cysteine residues in its active site. It is overexpressed in isoniazid-resistant strains of M. tuberculosis. We demonstrate that AhpC is capable of acting as a general antioxidant by protecting a range of substrates including supercoiled DNA. Active-site Cys to Ala mutants show that all three cysteine residues are important for activity. Cys-61 plays a central role in activity and Cys-174 also appears to be crucial. Interestingly, the C174A mutant is inactive, but double mutant C174/176A shows significant revertant activity. Kinetic parameters indicate that the C176A mutant is active, although much less efficient. We suggest that M. tuberculosis AhpC therefore belongs to a novel peroxiredoxin family and might follow a unique disulphide-relay reaction mechanism.


Sign in / Sign up

Export Citation Format

Share Document